期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进的VGG16模型的副热带高压相似识别及应用评估 被引量:1
1
作者 周必高 鲁小琴 +4 位作者 郑峰 黄克慧 洪水洁 谢海华 赵兵科 《气象》 CSCD 北大核心 2022年第12期1608-1616,共9页
台风预报除常规方法外,查找历史相似作为预报和决策的参考依据是常用手段,但从海量历史台风中检索相似费时费力。提出了一种基于改进的视觉几何组模型VGG16的副热带高压(以下简称副高)相似检索方法,进行基于副高相似的历史相似台风查询... 台风预报除常规方法外,查找历史相似作为预报和决策的参考依据是常用手段,但从海量历史台风中检索相似费时费力。提出了一种基于改进的视觉几何组模型VGG16的副热带高压(以下简称副高)相似检索方法,进行基于副高相似的历史相似台风查询。通过对1979—2020年台风季19736个对应时次的副高图像提取、数据增强、模型学习和优化,并以学习感知图像块相似度(learned perceptual image patch similarity,LPIPS)作为副高相似的度量指标,最终建立了改进的VGG16模型。试验结果表明,使用该模型可以找出较为相似的历史台风,模型检索得到的排名第一的历史相似台风与目标台风相似度高达92.55%,该方法可为台风预报业务人员提供了积极参考。同时,该模型相较于传统的人工识别,识别时间较短、检索效率高,可在业务及科研中推广应用。 展开更多
关键词 台风 副热带高压 VGG16模型 lpips (learned perceptual IMAGE PATCH similarity) 几何图像算法
下载PDF
基于深度反向投影的感知增强超分辨率重建模型 被引量:3
2
作者 杨书广 《应用光学》 CAS CSCD 北大核心 2021年第4期691-697,716,共8页
以SRCNN(super-resolution convolutional neural network)模型为代表的超分辨率重建模型通常都有很高的PSNR(peak signal to noise ratio)和SSIM(structural similarity)值,但其在视觉感知上并不令人满意,而以SRGAN为代表的拥有高感知... 以SRCNN(super-resolution convolutional neural network)模型为代表的超分辨率重建模型通常都有很高的PSNR(peak signal to noise ratio)和SSIM(structural similarity)值,但其在视觉感知上并不令人满意,而以SRGAN为代表的拥有高感知质量的GAN(generative adversarial networks)模型却很容易产生大量的伪细节,这表现在其PSNR和SSIM值通常都较低。针对上述问题,提出了一种基于深度反向投影的感知增强超分辨率重建模型。该模型采用双尺度自适应加权融合特征提取模块进行特征提取,然后通过深度反向投影进行上采样,最终由增强模块增强后得到最终输出。模型采用残差连接与稠密连接,有助于特征的共享以及模型的有效训练。在指标评价上,引入了基于学习的LPIPS(learned perceptual image patch similarity)度量作为新的图像感知质量评价指标,与PSNR、SSIM一起作为模型评价指标。实验结果表明,模型在测试数据集上PSNR、SSIM、LPIPS的平均值分别为27.84、0.7320、0.1258,各项指标均优于对比算法。 展开更多
关键词 超分辨率重建 感知质量 深度反向投影 lpips度量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部