期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进的VGG16模型的副热带高压相似识别及应用评估 被引量:1
1
作者 周必高 鲁小琴 +4 位作者 郑峰 黄克慧 洪水洁 谢海华 赵兵科 《气象》 CSCD 北大核心 2022年第12期1608-1616,共9页
台风预报除常规方法外,查找历史相似作为预报和决策的参考依据是常用手段,但从海量历史台风中检索相似费时费力。提出了一种基于改进的视觉几何组模型VGG16的副热带高压(以下简称副高)相似检索方法,进行基于副高相似的历史相似台风查询... 台风预报除常规方法外,查找历史相似作为预报和决策的参考依据是常用手段,但从海量历史台风中检索相似费时费力。提出了一种基于改进的视觉几何组模型VGG16的副热带高压(以下简称副高)相似检索方法,进行基于副高相似的历史相似台风查询。通过对1979—2020年台风季19736个对应时次的副高图像提取、数据增强、模型学习和优化,并以学习感知图像块相似度(learned perceptual image patch similarity,LPIPS)作为副高相似的度量指标,最终建立了改进的VGG16模型。试验结果表明,使用该模型可以找出较为相似的历史台风,模型检索得到的排名第一的历史相似台风与目标台风相似度高达92.55%,该方法可为台风预报业务人员提供了积极参考。同时,该模型相较于传统的人工识别,识别时间较短、检索效率高,可在业务及科研中推广应用。 展开更多
关键词 台风 副热带高压 VGG16模型 lpips (learned perceptual image patch similarity) 几何图像算法
下载PDF
基于深度反向投影的感知增强超分辨率重建模型 被引量:3
2
作者 杨书广 《应用光学》 CAS CSCD 北大核心 2021年第4期691-697,716,共8页
以SRCNN(super-resolution convolutional neural network)模型为代表的超分辨率重建模型通常都有很高的PSNR(peak signal to noise ratio)和SSIM(structural similarity)值,但其在视觉感知上并不令人满意,而以SRGAN为代表的拥有高感知... 以SRCNN(super-resolution convolutional neural network)模型为代表的超分辨率重建模型通常都有很高的PSNR(peak signal to noise ratio)和SSIM(structural similarity)值,但其在视觉感知上并不令人满意,而以SRGAN为代表的拥有高感知质量的GAN(generative adversarial networks)模型却很容易产生大量的伪细节,这表现在其PSNR和SSIM值通常都较低。针对上述问题,提出了一种基于深度反向投影的感知增强超分辨率重建模型。该模型采用双尺度自适应加权融合特征提取模块进行特征提取,然后通过深度反向投影进行上采样,最终由增强模块增强后得到最终输出。模型采用残差连接与稠密连接,有助于特征的共享以及模型的有效训练。在指标评价上,引入了基于学习的LPIPS(learned perceptual image patch similarity)度量作为新的图像感知质量评价指标,与PSNR、SSIM一起作为模型评价指标。实验结果表明,模型在测试数据集上PSNR、SSIM、LPIPS的平均值分别为27.84、0.7320、0.1258,各项指标均优于对比算法。 展开更多
关键词 超分辨率重建 感知质量 深度反向投影 lpips度量
下载PDF
利用双通道卷积神经网络的图像超分辨率算法 被引量:18
3
作者 徐冉 张俊格 黄凯奇 《中国图象图形学报》 CSCD 北大核心 2016年第5期556-564,共9页
目的图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基... 目的图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 d B与29.17 d B的效果。结论本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。 展开更多
关键词 图像超分辨率 Pair—wise卷积神经网络 双通道卷积神经网络 图像块相似度学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部