期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr alloys
1
作者 王敬丰 宋鹏飞 +1 位作者 潘复生 周小蒽 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期889-895,共7页
The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5,... The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5, there are a few lamellar phases that grow parallel with each other from the grain boundaries to the grain interior. With Zn content increasing, the Mg24(Er, Y, Zn)5 phase decreases, but the Mg12Zn(Y, Er) phase and lamellar phases continuously increase. When Zn content reaches 4% (normal mass fraction), the Mg12Zn(Y, Er) phase mainly exists as large bulks, and some a-Mg grains are thoroughly penetrated by the lamellar phases. Moreover, the crystallography structures of the Mgl2Zn(Y, Er) and Mg24(Er, Y, Zn)5 phases are confirmed as 18R-type long-period stacking ordered structure and body-centred cubic structure, respectively. 展开更多
关键词 magnesium alloys MICROstructure phase composition long-period stacking ordered lpso structure phase
下载PDF
Corrosion Behavior of Mg-Zn-Y Alloy with Long-period Stacking Ordered Structures 被引量:18
2
作者 Jinshan Zhang Jidong Xu Weili Cheng Changjiu Chen Jingjing Kang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第12期1157-1162,共6页
Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electr... Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electrochemical measurements in order to determine the corrosion rate and mechanism of the alloys. The results showed that the volume fraction of Mg(12)YZn phase increased and the shape of the Mg(12)YZn phase changed from discontinuous to continuous net-like with increasing Zn and Y content. The corrosion rate of the alloys greatly depended on the distribution and volume fraction of the Mg(12)YZn phase. Corrosion products appeared at the junction of Mg phase and Mg(12)YZn phase, indicating that the Mg(12)YZn phase accelerated galvanic corrosion of Mg matrix. Mg(97)Zn1Y2 alloy shows the lowest corrosion rate due to the continuous distribution of Mg(12)YZn phase. 展开更多
关键词 Mg-Zn-Y alloy Long-period stacking ordered lpso structure Micro-galvanic corrosion Mg(12)YZn phase Corrosion behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部