This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H...This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.展开更多
A new limit protection method based on Scheduling Command Governor(SCG) is proposed for imposing multiple constraints on a turbofan engine during acceleration process. A Gain Scheduling Controller(GSC) is designed for...A new limit protection method based on Scheduling Command Governor(SCG) is proposed for imposing multiple constraints on a turbofan engine during acceleration process. A Gain Scheduling Controller(GSC) is designed for the transient state control and its stability proof is developed using Linear Matrix Inequalities(LMIs). The SCG is an add-on control scheme which manages engine limits effectively based on reference trajectory optimization. Unlike the traditional min–max architecture with switching logic, the SCG method utilizes the Linear Parameter Varying(LPV) closed-loop model to form a prediction of future constraint violation and per instant solves a constraint-admissible reference within an approximate Maximal Output Admissible Set(MOAS).The influence of the variation of engine dynamic characteristics and equilibrium points during transient state control is handled by the design of contractive sets. Simulation results on a turbofan engine component-level model show the applicability and effectiveness of the SCG method. Compared to the traditional min–max method, the SCG method has less conservativeness. In addition,the design of contractive sets makes conservativeness tunable.展开更多
基金supported by the National Natural Science Foundation of China(6120300761304239+1 种基金61503392)the Natural Science Foundation of Shaanxi Province(2015JQ6213)
文摘This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.
基金supported by National Science and Technology Major Project of China(No.2017-V-0004-0054)。
文摘A new limit protection method based on Scheduling Command Governor(SCG) is proposed for imposing multiple constraints on a turbofan engine during acceleration process. A Gain Scheduling Controller(GSC) is designed for the transient state control and its stability proof is developed using Linear Matrix Inequalities(LMIs). The SCG is an add-on control scheme which manages engine limits effectively based on reference trajectory optimization. Unlike the traditional min–max architecture with switching logic, the SCG method utilizes the Linear Parameter Varying(LPV) closed-loop model to form a prediction of future constraint violation and per instant solves a constraint-admissible reference within an approximate Maximal Output Admissible Set(MOAS).The influence of the variation of engine dynamic characteristics and equilibrium points during transient state control is handled by the design of contractive sets. Simulation results on a turbofan engine component-level model show the applicability and effectiveness of the SCG method. Compared to the traditional min–max method, the SCG method has less conservativeness. In addition,the design of contractive sets makes conservativeness tunable.