期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Lorentz函数的稀疏约束RBM模型的算法研究
被引量:
1
1
作者
邹维宝
于昕玉
麦超
《计算机工程与应用》
CSCD
北大核心
2018年第7期213-220,231,共9页
受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)是一种有效的特征提取算法,受视觉皮层稀疏表示的启发,人们试图将稀疏这一概念引入到RBM中,以期学习到原始数据的稀疏表示,提高其特征提取性能。将Lorentz函数引入到RBM中,作为RBM的...
受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)是一种有效的特征提取算法,受视觉皮层稀疏表示的启发,人们试图将稀疏这一概念引入到RBM中,以期学习到原始数据的稀疏表示,提高其特征提取性能。将Lorentz函数引入到RBM中,作为RBM的稀疏约束正则项,构建基于Lorentz函数的稀疏约束RBM模型,将其称之为LRBM模型。对该模型的特征提取性能进行了可视化评价,同时对稀疏度和分类率进行了实验分析;最后将多个LRBM叠加,构造基于LRBM的深度置信网模型并分析该深度网络的性能。实验表明,LRBM模型有效地提取了数据集中的特征信息,在分类效果上较RBM平均提高了2%左右,增强了目标分类的可靠性。
展开更多
关键词
受限玻尔兹曼机(RBM)
稀疏表示
特征提取
lrbm模型
目标分类
下载PDF
职称材料
题名
基于Lorentz函数的稀疏约束RBM模型的算法研究
被引量:
1
1
作者
邹维宝
于昕玉
麦超
机构
长安大学地质工程与测绘学院
广西壮族自治区遥感信息测绘院
出处
《计算机工程与应用》
CSCD
北大核心
2018年第7期213-220,231,共9页
文摘
受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)是一种有效的特征提取算法,受视觉皮层稀疏表示的启发,人们试图将稀疏这一概念引入到RBM中,以期学习到原始数据的稀疏表示,提高其特征提取性能。将Lorentz函数引入到RBM中,作为RBM的稀疏约束正则项,构建基于Lorentz函数的稀疏约束RBM模型,将其称之为LRBM模型。对该模型的特征提取性能进行了可视化评价,同时对稀疏度和分类率进行了实验分析;最后将多个LRBM叠加,构造基于LRBM的深度置信网模型并分析该深度网络的性能。实验表明,LRBM模型有效地提取了数据集中的特征信息,在分类效果上较RBM平均提高了2%左右,增强了目标分类的可靠性。
关键词
受限玻尔兹曼机(RBM)
稀疏表示
特征提取
lrbm模型
目标分类
Keywords
Restricted Boltzmann Machine(RBM)
sparse representation
feature extraction
Lorentz function-based sparse constraints RBM(
lrbm
)
target classification
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Lorentz函数的稀疏约束RBM模型的算法研究
邹维宝
于昕玉
麦超
《计算机工程与应用》
CSCD
北大核心
2018
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部