期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于低秩稀疏分解的GPR杂波抑制方法
1
作者 陈诚 宋晓骥 +3 位作者 何志华 刘涛 曹来保 粟毅 《系统工程与电子技术》 EI CSCD 北大核心 2023年第10期3058-3064,共7页
针对探地雷达应用于地雷探测时的强杂波干扰问题,提出一种基于低秩稀疏分解的杂波抑制方法。该方法将加权核范数(weighted nuclear norm,WNN)引入稳健主成分分析(robust principle component analysis,RPCA)方法,结合随机奇异值分解(ran... 针对探地雷达应用于地雷探测时的强杂波干扰问题,提出一种基于低秩稀疏分解的杂波抑制方法。该方法将加权核范数(weighted nuclear norm,WNN)引入稳健主成分分析(robust principle component analysis,RPCA)方法,结合随机奇异值分解(randomized singular value decomposition,RSVD)与交替方向乘子(alternating direction method of multipliers,ADMM)法来求解表征杂波的低秩矩阵及表征目标的稀疏成分,提高了算法的精度与效率。从实验结果来看,所提方法能够有效改善成像结果的信杂比,且运算效率优于RPCA方法5倍以上,表明该方法能精确划分目标与杂波,有效实现杂波抑制。 展开更多
关键词 杂波抑制 低秩稀疏分解 交替方向乘子法 探地雷达
下载PDF
非凸运动辅助低秩稀疏分解目标检测算法 被引量:2
2
作者 杨真真 乐俊 +1 位作者 杨永鹏 范露 《系统工程与电子技术》 EI CSCD 北大核心 2020年第6期1218-1225,共8页
针对传统低秩稀疏分解(low rank and sparse decomposition,LRSD)用于视频运动目标检测时检测精度较低的问题,提出了一种鲁棒非凸运动辅助LRSD(robust nonconvex motion-assisted LRSD,RNMALRSD)的运动目标检测算法。该算法首先考虑到... 针对传统低秩稀疏分解(low rank and sparse decomposition,LRSD)用于视频运动目标检测时检测精度较低的问题,提出了一种鲁棒非凸运动辅助LRSD(robust nonconvex motion-assisted LRSD,RNMALRSD)的运动目标检测算法。该算法首先考虑到视频背景的低秩特性,采用非凸γ范数对秩函数进行逼近,考虑视频背景在变换域上仍然具有稀疏性,引入背景在变换域的稀疏先验。其次,引入运动辅助信息矩阵,使其融入前景的运动信息,表示每个像素属于背景的可能性,提高视频运动目标检测的准确度。然后,采用交替方向乘子法(alternating direction method of multipliers,ADMM)对提出的模型进行求解。最后,将提出的方法应用到视频运动目标检测上进行仿真实验。对实验结果的分析表明,提出的RNMALRSD方法比其他基于LRSD的运动目标检测方法具有更高的检测精度。 展开更多
关键词 低秩稀疏分解 运动辅助 交替方向乘子法 鲁棒主成分分析 目标检测
下载PDF
Robust Background Subtraction Method via Low-Rank and Structured Sparse Decomposition 被引量:1
3
作者 Minsheng Ma Ruimin Hu +2 位作者 Shihong Chen Jing Xiao Zhongyuan Wang 《China Communications》 SCIE CSCD 2018年第7期156-167,共12页
Background subtraction is a challenging problem in surveillance scenes. Although the low-rank and sparse decomposition(LRSD) methods offer an appropriate framework for background modeling, they fail to account for ima... Background subtraction is a challenging problem in surveillance scenes. Although the low-rank and sparse decomposition(LRSD) methods offer an appropriate framework for background modeling, they fail to account for image's local structure, which is favorable for this problem. Based on this, we propose a background subtraction method via low-rank and SILTP-based structured sparse decomposition, named LRSSD. In this method, a novel SILTP-inducing sparsity norm is introduced to enhance the structured presentation of the foreground region. As an assistance, saliency detection is employed to render a rough shape and location of foreground. The final refined foreground is decided jointly by sparse component and attention map. Experimental results on different datasets show its superiority over the competing methods, especially under noise and changing illumination scenarios. 展开更多
关键词 background subtraction lrsd structured sparse SILTP
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部