期刊文献+
共找到4,171篇文章
< 1 2 209 >
每页显示 20 50 100
基于动态遗忘因子递推最小二乘法和改进粒子滤波算法的锂电池SOC估计
1
作者 卢昊 李广军 张兰春 《车用发动机》 北大核心 2024年第3期66-73,共8页
为了提高锂电池荷电状态(SOC)估计的精度,提出了一种基于动态遗忘因子递推最小二乘法和改进粒子滤波算法相结合的锂电池SOC估计方法。针对固定遗忘因子递推最小二乘法在电池参数辨识中难以同时保持快速收敛和稳定性的问题,引入动态遗传... 为了提高锂电池荷电状态(SOC)估计的精度,提出了一种基于动态遗忘因子递推最小二乘法和改进粒子滤波算法相结合的锂电池SOC估计方法。针对固定遗忘因子递推最小二乘法在电池参数辨识中难以同时保持快速收敛和稳定性的问题,引入动态遗传因子,以模型辨识值和实际值的残差为变量构建修正公式,实现遗忘因子动态调整。为了改善粒子滤波(PF)的粒子多样性丧失问题,采用白鹭群优化算法(ESOA)对粒子滤波算法进行优化。仿真结果表明,基于动态遗忘因子递推最小二乘法和改进粒子滤波算法的锂电池SOC估计误差始终保持在0.3%以内,平均绝对误差和标准差为0.15%和0.17%,与其他算法相比具有更好的精度和稳定性。 展开更多
关键词 锂电池 电池荷电状态(SOC) 动态遗忘因子 递推最小二乘 白鹭群优化算法 粒子滤波
下载PDF
基于精度因子与距离残差的加权最小二乘算法在DTMB辅助北斗定位中的应用
2
作者 李旋 杨海效 +2 位作者 李济源 翟悦峰 吴虹 《高技术通讯》 CAS 北大核心 2024年第7期705-713,共9页
北斗三号系统已完成建设,该系统可以在空旷的室外提供较为准确的定位信息。但是在城市峡谷区域,北斗信号会受到遮挡。当能够提供有效定位信息的北斗卫星数目逐渐减少时,利用北斗卫星进行定位得到的定位结果偏差会逐渐增大。本文针对以... 北斗三号系统已完成建设,该系统可以在空旷的室外提供较为准确的定位信息。但是在城市峡谷区域,北斗信号会受到遮挡。当能够提供有效定位信息的北斗卫星数目逐渐减少时,利用北斗卫星进行定位得到的定位结果偏差会逐渐增大。本文针对以上问题,在采用地面数字多媒体广播信号辅助北斗定位的基础上,利用基于精度因子与距离残差的加权最小二乘算法进行定位,相比于利用最小二乘算法进行定位,定位精度提高了40%~50%。本文提出的算法对于解决定位基站数目不足时增加其他不同类型基站来进行辅助定位的问题具有借鉴作用。 展开更多
关键词 改进的加权最小二乘算法 精度因子 距离残差 辅助定位
下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型
3
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小二乘支持向量机 遗传算法
下载PDF
一类最小二乘的自动调参问题的求解算法
4
作者 徐新越 蒋毅 《四川师范大学学报(自然科学版)》 CAS 2024年第6期812-817,共6页
运用APGnc+算法思想,求解最小二乘自动调参问题.以MNIST数据集为基础,考察最小二乘自动调参在分类问题中的应用.此外,数值实验结果表明本文的算法比已有的方法快.
关键词 最小二乘自动调参 KL性质 APGnc+算法
下载PDF
基于最小二乘和自适应蛇优化算法的直驱风机LVRT特性辨识
5
作者 徐恒山 李文昊 +2 位作者 赵铭洋 薛飞 张旭军 《电力系统及其自动化学报》 CSCD 北大核心 2024年第2期55-66,共12页
为提高直驱风机低电压穿越LVRT(low voltage ride through)控制参数辨识精度,提出了一种基于最小二乘LS(least square)和自适应蛇优化ASO(adaptive snake optimization)算法的直驱风机LVRT特性辨识方法。首先,利用最小二乘法拟合出直驱... 为提高直驱风机低电压穿越LVRT(low voltage ride through)控制参数辨识精度,提出了一种基于最小二乘LS(least square)和自适应蛇优化ASO(adaptive snake optimization)算法的直驱风机LVRT特性辨识方法。首先,利用最小二乘法拟合出直驱风机LVRT待辨识参数初值,以确定待辨识参数的寻优范围;然后,分析了蛇优化SO(snake optimization)算法分阶段寻优的边界条件,设计了分阶段自适应学习因子,并引入Levy飞行策略,提出了适用于直驱风机LVRT控制参数辨识的ASO算法;最后,将ASO算法多次辨识平均值作为最终结果。结果表明,所提方法能快速、准确辨识直驱风机LVRT控制参数。 展开更多
关键词 直驱风机 参数辨识 低电压穿越 最小二乘 自适应蛇优化算法
下载PDF
基于约束总体最小二乘法的超宽带掘进机定位算法研究
6
作者 李之奇 纪英俊 +2 位作者 陈香敏 徐静 左震宇 《电子设计工程》 2024年第20期144-148,共5页
为推进煤矿巷道内掘进机自主定位和定向综掘无人化作业,针对定位时传感器之间由于系统同步时钟偏差引起的定位误差问题,以及由于最小二乘法本身的降正则化特性引起系数矩阵严重病态,表现为系数矩阵中的微小误差会导致定位结果产生巨大... 为推进煤矿巷道内掘进机自主定位和定向综掘无人化作业,针对定位时传感器之间由于系统同步时钟偏差引起的定位误差问题,以及由于最小二乘法本身的降正则化特性引起系数矩阵严重病态,表现为系数矩阵中的微小误差会导致定位结果产生巨大偏移的问题。提出了一种基于超宽带的到达时间差(TDOA)约束总体最小二乘法(CTLS)的定位算法:将TDOA非线性观测方程组做线性化处理,结合系统误差在观测方程组的分布特性,采用CTLS算法得到经优化后的目标函数,通过牛顿迭代法得到目标位置估计。实验结果表明,在TDOA测量误差较小的条件下,目标位置估计精度能够接近克拉美罗下限(CRLB)。 展开更多
关键词 超宽带 定位算法 TDOA 约束总体最小二乘
下载PDF
一种基于三维最小二乘与RANSAC算法的隧道断面检测方法
7
作者 陈凯 邵成立 +3 位作者 宫宁 刘建英 黄鹏 陈帅 《城市勘测》 2024年第5期155-159,163,共6页
盾构法因安全高效在地铁隧道等交通设施建设中被广泛应用,为保障建成后隧道的平稳运行需进行定期稳定性检测。相对于全站仪等传统低效率作业方法,短时间内获取大量数据的三维激光扫描技术逐渐成为盾构法隧道检测的首选方法。但隧道内管... 盾构法因安全高效在地铁隧道等交通设施建设中被广泛应用,为保障建成后隧道的平稳运行需进行定期稳定性检测。相对于全站仪等传统低效率作业方法,短时间内获取大量数据的三维激光扫描技术逐渐成为盾构法隧道检测的首选方法。但隧道内管线、轨道等设施同样被扫描并掺杂在获得的点云数据中,成为影响隧道断面参数计算的噪声点。本文提出一种基于三维最小二乘与RANSAC算法的隧道断面检测方法,该方法首先基于三维最小二乘(Three-Dimensional Least Square Method,3D-LSM)计算隧道点云中轴线整体方向向量来获取隧道断面,进而将获取的三维断面数据转换到二维平面上,随后基于随即抽样一致算法(Random Sample Consensus,RANSAC)建立拟合去噪模型,根据断面数据拟合计算隧道断面的半径和椭圆度。通过青岛某地铁隧道精密检测工作表明:该方法能够应用于三维激光扫描计算隧道断面的椭圆度和半径中,并有效地克服了噪声点对拟合精度的扰动,提高模型拟合计算精度和对粗差点抵抗性。 展开更多
关键词 隧道检测 点云数据 三维最小二乘 RANSAC算法 隧道断面半径和椭圆度
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
8
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量机 软测量模型
下载PDF
基于改进初值带遗忘因子的递推最小二乘法的锂电池参数辨识 被引量:1
9
作者 王文 史华泽 +3 位作者 岳雨霏 黎隆基 吴传平 童宇轩 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期178-186,共9页
锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识... 锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识精度低、收敛速度慢的问题。为此,将电路分析法与FFRLS相结合,提出基于改进初值带遗忘因子的递推最小二乘法(improved initial value-FFRLS,IIV-FFRLS)。首先,通过离线辨识得到各荷电状态点对应的等效电路模型参数并进行多项式拟合;然后,利用初始开路电压(open circuit voltage,OCV)和OCV-SOC曲线获得初始SOC,代入参数拟合函数得到初始参数;最后,将初始参数带入递推公式得到IIV-FFRLS迭代初始值。对4种锂电池工况进行参数辨识,结果表明:与传统方法相比,IIV-FFRLS的平均相对误差、收敛时间分别减小58%、23%以上;IIV-FFRLS具有更高的辨识精度与更快的收敛速度。 展开更多
关键词 锂离子电池 参数辨识 带遗忘因子的递推最小二乘算法 迭代初始值
下载PDF
采用改进遗传算法优化LS-SVM逆系统的外转子无铁心无轴承永磁同步发电机解耦控制 被引量:1
10
作者 朱熀秋 沈良瑜 《中国电机工程学报》 EI CSCD 北大核心 2024年第5期2037-2046,I0032,共11页
为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(leas... 为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(least square support vector machine,LS-SVM)逆系统的解耦控制策略。首先,基于ORC-BPMSG的结构及工作原理,推导其数学模型,并分析其可逆性。其次,建立LS-SVM回归方程,并采用IGA优化LS-SVM的性能参数,从而训练得到逆系统。然后,将逆系统与原系统串接,形成伪线性系统,实现了ORC-BPMSG的线性化和解耦。最后,将提出的控制方法与传统LS-SVM逆系统控制方法进行对比仿真和实验。仿真和实验结果表明:所提出的控制策略可以较好地实现ORC-BPMSG输出电压和悬浮力、以及悬浮力之间的解耦控制。 展开更多
关键词 外转子无铁心无轴承永磁同步发电机 最小二乘支持向量机 逆系统 改进遗传算法 解耦控制
下载PDF
基于TLS的改进子空间投影算法
11
作者 李飞 张天良 梁满 《通信技术》 2024年第3期229-235,共7页
针对经典MUSIC算法在信源相干、低信噪比、小快拍数等非理想环境下性能失效的问题,提出了一种改进的基于TLS的加权子空间投影算法。首先对阵列接收的数据协方差矩阵进行重构处理,以达到解相干目的;其次充分利用子空间信息,基于总体最小... 针对经典MUSIC算法在信源相干、低信噪比、小快拍数等非理想环境下性能失效的问题,提出了一种改进的基于TLS的加权子空间投影算法。首先对阵列接收的数据协方差矩阵进行重构处理,以达到解相干目的;其次充分利用子空间信息,基于总体最小二乘拟合方法对特征值进行拟合修正,基于修正MUSIC算法思想,利用校正后的噪声特征值和信号特征值分别对噪声子空间和信号子空间进行加权处理,得到改进后的噪声子空间和信号子空间,并将两者结合得到新的空间谱函数;最后进行谱峰搜索,完成信号源的波达方向估计。仿真结果表明,改进后的算法既适用于相干信号环境,在低信噪比、小快拍数及信号入射角度间隔较小的情况下,又能有效估计出信源的波达方向。 展开更多
关键词 阵列信号处理 DOA估计 MUSIC算法 总体最小二乘算法
下载PDF
基于WT和黏菌算法的LSSVM短期风功率预测 被引量:1
12
作者 赵卿 高文华 +1 位作者 石慧 董增寿 《计算机仿真》 2024年第7期166-170,226,共6页
针对风电出力存在随机性、波动性等问题,建立基于小波变换(WT)与黏菌算法(Slime mould algorithm, SMA)优化最小二乘支持向量机(LSSVM)关键参数的风功率预测模型。首先利用小波变换将风功率信号以及风速信号分解为多个不同频率的平稳的... 针对风电出力存在随机性、波动性等问题,建立基于小波变换(WT)与黏菌算法(Slime mould algorithm, SMA)优化最小二乘支持向量机(LSSVM)关键参数的风功率预测模型。首先利用小波变换将风功率信号以及风速信号分解为多个不同频率的平稳的子序列,并提出采用一种黏菌优化算法优化LSSVM的参数,同时引入气象因素,包括风速、风向、温度、气压、湿度作为输入,分别建立模型来预测风电功率。通过将各个模型预测结果加和得到完整的风功率预测值。使用某风电厂数据进行仿真验证,实验结果表明,所提出的WT-SMA-LSSVM预测模型在短期风功率预测中具有更高的预测精度。 展开更多
关键词 风功率预测 最小二乘支持向量机 小波变换 黏菌算法
下载PDF
基于改进最小二乘支持向量机组合模型的深基坑沉降变形预测 被引量:1
13
作者 刘清龙 吕颖慧 +1 位作者 秦磊 赵鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第1期8-14,共7页
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量... 为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.0809 mm^(2),均方根误差为0.2838 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 展开更多
关键词 深基坑沉降变形 最小二乘支持向量机 经验模态分解 粒子群优化算法 遗传算法
下载PDF
基于最小二乘算法修正接触网电弧沿边放电参数的研究
14
作者 欧志新 邓春兰 +1 位作者 李继侠 高文科 《重庆科技学院学报(自然科学版)》 CAS 2023年第2期71-75,共5页
弓网系统的安全运行可为电力机车提供稳定的电流供应。高速动态运行的接触网伴随着电弧放电现象,易使暂态过电流侵入输电线路,从而造成供电故障。首先,分析接触网动态运行的预估模型和参数变化特征;其次,利用最小二乘算法对模型参数进... 弓网系统的安全运行可为电力机车提供稳定的电流供应。高速动态运行的接触网伴随着电弧放电现象,易使暂态过电流侵入输电线路,从而造成供电故障。首先,分析接触网动态运行的预估模型和参数变化特征;其次,利用最小二乘算法对模型参数进行辨识,提出电弧沿边放电防护与参数修正方案;最后,应用Matlab软件对弓网动态模型参数进行拟合修正。仿真实验结果表明,采用最小二乘算法在线修正误差可获得最优解,并与设定值保持良好的线性关系。 展开更多
关键词 最小二乘算法 弓网系统 沿边放电 模型辨识与修正 MATLAB仿真
下载PDF
加权最小二乘联合遗传算法的无源定位
15
作者 刘高辉 鲁亮亮 《计算机系统应用》 2023年第6期173-180,共8页
针对复杂环境下运动通信辐射源的无源定位,闭式解方法对于时频差模型中的测量噪声敏感且存在定位均方根误差较大问题.为了改善大观测误差下的定位性能,本文提出一种加权最小二乘联合遗传算法的递推式混合TDOA/FDOA定位方法.该方法首先... 针对复杂环境下运动通信辐射源的无源定位,闭式解方法对于时频差模型中的测量噪声敏感且存在定位均方根误差较大问题.为了改善大观测误差下的定位性能,本文提出一种加权最小二乘联合遗传算法的递推式混合TDOA/FDOA定位方法.该方法首先利用已知站点观测大量时频差数据并建立误差模型,基于模型对定位过程中的多组时频差序列进行数据处理;其次通过加权最小二乘求解目标位置的初始值;然后采用改进的遗传算法在初始值的基础上通过多组时频差序列不断迭代、递推求解,修正位置坐标;最后利用位置估计和频差模型完成对目标速度估计.仿真结果表明,本文定位算法相比于经典两步加权最小二乘法具有更低的均方根误差,在大观测误差下能保持较高精度.同时相比于其他混合定位算法收敛速度快,可以有效减少计算量. 展开更多
关键词 到达时间差 到达频率差 加权最小二乘 遗传算法 递推
下载PDF
基于渐消因子的ECEF-GLS估计算法 被引量:1
16
作者 董云龙 张焱 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期137-142,共6页
传统的误差配准算法假设系统偏差恒定或缓慢变化,当系统误差发生突变或快速变化时,这一假设不再成立。针对这一问题,研究了时变条件下的误差配准算法,引入渐消因子,对常规的基于地心地固坐标系的广义最小二乘算法(generalized least squ... 传统的误差配准算法假设系统偏差恒定或缓慢变化,当系统误差发生突变或快速变化时,这一假设不再成立。针对这一问题,研究了时变条件下的误差配准算法,引入渐消因子,对常规的基于地心地固坐标系的广义最小二乘算法(generalized least squares algorithm based on the earth-centered earth-fixed coordinate system,ECEF-GLS)进行了修正,弱化历史量测对配准的影响,并对渐消因子的选取问题进行了研究,给出了合理的设计方法。算法验证表明,基于渐消因子的ECEF-GLS估计算法能够对时变的系统偏差进行有效估计,精度满足配准要求。 展开更多
关键词 基于地心地固坐标系的广义最小二乘算法 渐消因子 参数估计 时变 系统误差
下载PDF
基于改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障诊断方法 被引量:26
17
作者 李云淏 咸日常 +4 位作者 张海强 赵飞龙 李嘉洋 王玮 李增悦 《电网技术》 EI CSCD 北大核心 2023年第4期1470-1477,共8页
电力变压器运行故障的准确诊断有利于提高变电设备状态检修和电网安全运行水平,为实现故障的准确分类,文章以油中溶解的5种典型气体作为故障诊断的特征量,提出一种基于改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障诊断方法。... 电力变压器运行故障的准确诊断有利于提高变电设备状态检修和电网安全运行水平,为实现故障的准确分类,文章以油中溶解的5种典型气体作为故障诊断的特征量,提出一种基于改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障诊断方法。该方法通过改进灰狼算法寻求最小二乘支持向量机中的最优惩罚系数C和核函数参数g,用以提高故障诊断的准确率。首先阐明最小二乘支持向量机和灰狼算法的改进点并将二者耦合,将其代入413组电力变压器的油中溶解气体检测数据来诊断故障类型,与其他诊断方法进行对比;其次研究惩罚系数C和核函数参数g对电力变压器故障类型识别准确率的影响规律;最后借助训练后的改进灰狼算法与最小二乘支持向量机耦合方法,通过两台不同电压等级的变压器故障实例分析,验证了故障诊断方法的有效性。研究结果表明:相较于单一使用最小二乘支持向量机和传统灰狼算法与最小二乘支持向量机耦合,改进灰狼算法与最小二乘支持向量机耦合方法对电力变压器故障诊断的准确率分别提高了14%和7%。此外,惩罚系数C和核函数参数g对电力变压器故障类型识别准确率的影响呈现非线性规律,凸显了通过智能算法找到最优解的便捷性、必要性、有效性。 展开更多
关键词 改进灰狼算法 最小二乘支持向量机 惩罚系数 核函数参数 电力变压器 油中气体 故障诊断
下载PDF
基于ASNLS算法的智能浮标浮潜模型参数辨识
18
作者 钟一鸣 于曹阳 +2 位作者 曹军军 姚宝恒 连琏 《中国舰船研究》 CSCD 北大核心 2024年第2期13-20,共8页
[目的]针对智能浮标大深度浮潜模型难以精确量化的问题,提出一种抗数据饱和及测量噪声的最小二乘算法(ASNLS),以实现浮潜多参数识别及深度预测。[方法]首先,在智能浮标浮潜运动灰箱模型中引入其执行机构的非线性动作特性以契合实际模型... [目的]针对智能浮标大深度浮潜模型难以精确量化的问题,提出一种抗数据饱和及测量噪声的最小二乘算法(ASNLS),以实现浮潜多参数识别及深度预测。[方法]首先,在智能浮标浮潜运动灰箱模型中引入其执行机构的非线性动作特性以契合实际模型,并将连续型浮潜运动方程转化为离散模式以匹配实际离散的数据采样方式;然后,将离散型运动方程构造为基于相关函数的表达形式,以减弱噪声对参数辨识的影响;最后,通过调整协方差矩阵的取值,实现该浮潜参数辨识算法的抗数据饱和功能。[结果]基于2021年智能浮标在南海的大深度试验数据,开展了浮潜运动模型参数辨识及深度预测,验证结果表明:相较于传统的最小二乘算法及支持向量机算法,ASNLS算法的收敛速度更快(较最小二乘算法提高了31.8%)、深度预测误差更小(不同深度下的平均绝对百分比误差均小于9%)。[结论]ASNLS算法可为智能浮标的深度控制和预报提供有效的浮潜模型支撑。 展开更多
关键词 智能浮标 参数辨识 抗数据饱和及测量噪声的最小二乘算法 运动预测 数据饱和
下载PDF
基于多核LSSVM的谷物蛋白质二级结构预测与优化
19
作者 梁俊 刘静 +1 位作者 管骁 陈滢滢 《食品与生物技术学报》 CAS CSCD 北大核心 2024年第7期117-125,共9页
蛋白质的二级结构对其空间结构和功能有着极其重要的影响,利用机器学习方法进行谷物蛋白质二级结构预测是生物和食品领域的重要研究内容。作者在现有蛋白质数据库中选取玉米、小麦、大豆的谷物蛋白质,使用多特征融合方式对蛋白质序列进... 蛋白质的二级结构对其空间结构和功能有着极其重要的影响,利用机器学习方法进行谷物蛋白质二级结构预测是生物和食品领域的重要研究内容。作者在现有蛋白质数据库中选取玉米、小麦、大豆的谷物蛋白质,使用多特征融合方式对蛋白质序列进行特征提取,提出将多核学习与最小二乘支持向量机(LSSVM)相结合,以多个核函数的线性加权组合代替传统单一核函数,利用核权重调整融合效果,构建多核LSSVM模型预测谷物蛋白质二级结构。使用粒子群优化算法(PSO)对模型超参数进行优化,寻找最佳超参数组合提升模型预测性能。研究结果表明,多核LSSVM模型能够改善单一核函数高维映射的局限性,融合各核函数优势,通过PSO算法获取最佳超参数组合。该模型结合多特征提取方式显著提高了谷物蛋白质二级结构预测的Q_(3)准确率。 展开更多
关键词 谷物 蛋白质级结构 多核 最小二乘支持向量机 粒子群算法
下载PDF
梯度提升最小二乘支持向量回归的压电执行器磁滞特性建模
20
作者 王建成 李强亚 +2 位作者 刘涛 谭永红 阎帅 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第9期1692-1697,共6页
针对用于精密运动定位的压电执行器具有磁滞效应的问题,本文提出一种基于梯度提升最小二乘支持向量回归(GB-LSSVR)的建模方法.首先,通过引入磁滞算子构造拓展的输入空间,将磁滞的多值映射转换为一对一映射.然后,建立基于GB-LSSVR的磁滞... 针对用于精密运动定位的压电执行器具有磁滞效应的问题,本文提出一种基于梯度提升最小二乘支持向量回归(GB-LSSVR)的建模方法.首先,通过引入磁滞算子构造拓展的输入空间,将磁滞的多值映射转换为一对一映射.然后,建立基于GB-LSSVR的磁滞模型,设计可保证收敛粒子群算法(GCPSO)对GB-LSSVR模型参数进行优化.最后,将所提出方法用于实际预测一个压电执行器的位移.结果表明,该方法相对于经典的最小二乘支持向量回归(LSSVR)和截断最小二乘支持向量回归(T-LSSVR)算法,能得到更加准确的结果. 展开更多
关键词 压电执行器 磁滞效应 磁滞算子 最小二乘支持向量机 可保证收敛粒子群算法 梯度提升
下载PDF
上一页 1 2 209 下一页 到第
使用帮助 返回顶部