A series of Mn-promoted 15 wt-% Ni/Al2O3 catalysts were prepared by an incipient wetness impreg- nation method. The effect of the Mn content on the activity of the Ni/Al2O3 catalysts for CO2 methanation and the co- me...A series of Mn-promoted 15 wt-% Ni/Al2O3 catalysts were prepared by an incipient wetness impreg- nation method. The effect of the Mn content on the activity of the Ni/Al2O3 catalysts for CO2 methanation and the co- methanation of CO and CO2 in a fixed-bed reactor was investigated. The catalysts were characterized by N2 physisorption, hydrogen temperature-programmed reduc- tion and desorption, carbon dioxide temperature-pro- grammed desorption, X-ray diffraction and high- resolution transmission electron microscopy. The presence of Mn increased the number of CO2 adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/ Al2O3 catalysts had improved CO2 methanation activity especially at low temperatures (250 to 400 ℃). The Mn content was varied from 0.86% to 2.54% and the best CO2 conversion was achieved with the 1.71Mn-Ni/Al2O3 catalyst. The co-methanation tests on the 1.71Mn-Ni/ Al2O3 catalyst indicated that adding Mn markedly enhanced the CO2 methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO2 methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.展开更多
Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (Vo) on metal oxides is expected to be a key factor affec...Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (Vo) on metal oxides is expected to be a key factor affecting the efficiency of photocatalytic CO2 reduction on metal-oxide-based catalysts. Yet, to date, the question of how an Vo influences photocatalytic CO2 reduction is still unanswered. Herein, we report that, on Vo-rich gallium oxide coated with Pt nanoparticles (Vo-rich Pt/Ga203), CO2 is photocatalytically reduced to CO, with a highly enhanced CO evolution rate (21.0umol.h-1) compared to those on Vo-poor Pt/Ga2O3 (3.9 gmol-h-1) and Pt/TiO2(P25) (6.7 gmol.h-1). We demonstrate that the Vo leads to improved CO2 adsorption and separation of the photoinduced charges on Pt/Ga203, thus enhancing the photocatalytic activity of Pt/Ga203. Rational fabrication of an Vo is thereby an attractive strategy for developing efficient catalysts for photocatalytic CO2 reduction.展开更多
文摘A series of Mn-promoted 15 wt-% Ni/Al2O3 catalysts were prepared by an incipient wetness impreg- nation method. The effect of the Mn content on the activity of the Ni/Al2O3 catalysts for CO2 methanation and the co- methanation of CO and CO2 in a fixed-bed reactor was investigated. The catalysts were characterized by N2 physisorption, hydrogen temperature-programmed reduc- tion and desorption, carbon dioxide temperature-pro- grammed desorption, X-ray diffraction and high- resolution transmission electron microscopy. The presence of Mn increased the number of CO2 adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/ Al2O3 catalysts had improved CO2 methanation activity especially at low temperatures (250 to 400 ℃). The Mn content was varied from 0.86% to 2.54% and the best CO2 conversion was achieved with the 1.71Mn-Ni/Al2O3 catalyst. The co-methanation tests on the 1.71Mn-Ni/ Al2O3 catalyst indicated that adding Mn markedly enhanced the CO2 methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO2 methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.
文摘Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (Vo) on metal oxides is expected to be a key factor affecting the efficiency of photocatalytic CO2 reduction on metal-oxide-based catalysts. Yet, to date, the question of how an Vo influences photocatalytic CO2 reduction is still unanswered. Herein, we report that, on Vo-rich gallium oxide coated with Pt nanoparticles (Vo-rich Pt/Ga203), CO2 is photocatalytically reduced to CO, with a highly enhanced CO evolution rate (21.0umol.h-1) compared to those on Vo-poor Pt/Ga2O3 (3.9 gmol-h-1) and Pt/TiO2(P25) (6.7 gmol.h-1). We demonstrate that the Vo leads to improved CO2 adsorption and separation of the photoinduced charges on Pt/Ga203, thus enhancing the photocatalytic activity of Pt/Ga203. Rational fabrication of an Vo is thereby an attractive strategy for developing efficient catalysts for photocatalytic CO2 reduction.