This paper describes a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). In order to improve MCFC’s generating performance, prolong its life and guarantee safety, it must be co...This paper describes a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). In order to improve MCFC’s generating performance, prolong its life and guarantee safety, it must be controlled efficiently. First, the output voltage of an MCFC stack is identified by a least squares support vector machine (LS-SVM) method with radial basis function (RBF) kernel so as to implement nonlinear predictive control. And then, the optimal control sequences are obtained by applying genetic algorithm (GA). The model and controller have been realized in the MATLAB environment. Simulation results indicated that the proposed controller exhibits satisfying control effect.展开更多
基金Project (No. 2003 AA517020) supported by the Hi-Tech Researchand Development Program (863) of China
文摘This paper describes a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). In order to improve MCFC’s generating performance, prolong its life and guarantee safety, it must be controlled efficiently. First, the output voltage of an MCFC stack is identified by a least squares support vector machine (LS-SVM) method with radial basis function (RBF) kernel so as to implement nonlinear predictive control. And then, the optimal control sequences are obtained by applying genetic algorithm (GA). The model and controller have been realized in the MATLAB environment. Simulation results indicated that the proposed controller exhibits satisfying control effect.