期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic Characteristics of Metro Vehicle under Thermal Deformation of Long-Span Cable-Stayed Bridge
1
作者 Quanming Long Qianhua Pu +2 位作者 Wenhao Zhou Li Zhu Zhaowei Chen 《World Journal of Engineering and Technology》 2022年第3期656-677,共22页
In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamic... In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamics, the rigid-flexible coupled dynamic model of metro vehicle-track-LSCSB system is established by using finite element method and multi-rigid-body dynamics. Adopting this model, the deformation of LSCSB subject to temperature is analyzed, then the comprehensive effect of track random irregularity and rail deformation caused by temperature load is considered to study the dynamic characteristics of metro vehicle running through the bridge, and finally the influences of temperature increment and running speed on concerned dynamic indices of vehicle are studied. The results show that the LSCSB deforms obviously subject to temperature load, and the overall performance is that the cooling is arched, and the heating is bent, and the shape variable changes almost linearly with the temperature load. According to the parameters studied in this paper, the rail deformation caused by temperature load increases the wheel-rail vertical force, derailment coefficient and wheel load reduction rate by 1.5%, 3.1% and 5% respectively. The vertical acceleration of the vehicle body decreases by 2.4% under the cooling condition, while increases by 3.7% under the heating condition. The dynamic response of the bridge changes under temperature load. The maximum vertical and horizontal displacement in the middle of the main beam span are 6.24 mm and 2.19 mm respectively, and the maximum vertical and horizontal acceleration are 1.29 cm/s<sup>2</sup> and 2.54cm/s<sup>2</sup> respectively. The derailment coefficient and vertical acceleration of vehicle body are more affected by temperature load, and the wheel load reduction rate and wheel-rail vertical force are more affected by speed. The conclusion of this paper provides a reference for subsequent scholars to study the influence of thermal deformation on the dynamic response of vehicles on LSCSB. 展开更多
关键词 Vehicle Engineering Vehicle Rail Bridge Coupling Vibration lscsb Temperature Load Dynamic Characteristics
下载PDF
非一致场地大跨度斜拉桥的地震响应分析 被引量:1
2
作者 夏明强 欧文东 《世界地震工程》 CSCD 北大核心 2014年第3期196-201,共6页
大跨度斜拉桥支承处的地质条件较复杂,地震波的传播特性不同,一致激励分析方法不符合实际情况。本文以主跨为680m的某大跨度斜拉桥为例,建立数值有限元模型,分析了一维及三维随机地震动激励下,同时考虑局部场地效应的地震响应规律,并将... 大跨度斜拉桥支承处的地质条件较复杂,地震波的传播特性不同,一致激励分析方法不符合实际情况。本文以主跨为680m的某大跨度斜拉桥为例,建立数值有限元模型,分析了一维及三维随机地震动激励下,同时考虑局部场地效应的地震响应规律,并将二者的数据作了对比分析。结果表明:与同为硬场地条件下相比,同为软场地条件时,纵向地震动激励下,主梁纵向位移增大了217%,横向地震动激励下,主梁的横向位移增大了89%,三维地震动激励下,主梁的纵向位移和横向位移分别增大了218%和92%;三维地震动激励下较一维地震动激励下结构响应大,因此,大跨度斜拉桥抗震研究应充分考虑地震动的多维性与局部场地效应的影响。 展开更多
关键词 随机响应 局部场地效应 大跨度斜拉桥
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部