This paper presents a voice conversion technique based on bilinear models and introduces the concept of contextual modeling. The bilinear approach reformulates the spectral envelope representation from line spectral f...This paper presents a voice conversion technique based on bilinear models and introduces the concept of contextual modeling. The bilinear approach reformulates the spectral envelope representation from line spectral frequencies feature to a two-factor parameterization corresponding to speaker identity and phonetic information, the so-called style and content factors. This decomposition offers a flexible representation suitable for voice conversion and facilitates the use of efficient training algorithms based on singular value decomposition. In a contextual approach (bilinear) models are trained on subsets of the training data selected on the fly at conversion time depending on the characteristics of the feature vector to be converted. The performance of bilinear models and context modeling is evaluated in objective and perceptual tests by comparison with the popular GMM-based voice conversion method for several sizes and different types of training data.展开更多
Automatic Question Answer System(QAS)is a kind of high-powered software system based on Internet.Its key technology is the interrelated technology based on natural language understanding,including the construction of ...Automatic Question Answer System(QAS)is a kind of high-powered software system based on Internet.Its key technology is the interrelated technology based on natural language understanding,including the construction of knowledge base and corpus,the Word Segmentation and POS Tagging of text,the Grammatical Analysis and Semantic Analysis of sentences etc.This thesis dissertated mainly the denotation of knowledge-information based on semantic network in QAS,the stochastic syntax-parse model named LSF of knowledge-information in QAS,the structure and constitution of QAS.And the LSF model's parameters were exercised,which proved that they were feasible.At the same time,through "the limited-domain QAS" which was exploited for banks by us,these technologies were proved effective and propagable.展开更多
为了高效率量化线谱频率(linear spectrumfrequency,LSF)参数,提出了基于G auss ian混合模型(G auss ian m ix ture m ode l,GMM)的LSF量化算法。假设LSF矢量属于GMM中的某一个G auss ian分布,用G auss ian分布随机矢量的量化方法对LSF...为了高效率量化线谱频率(linear spectrumfrequency,LSF)参数,提出了基于G auss ian混合模型(G auss ian m ix ture m ode l,GMM)的LSF量化算法。假设LSF矢量属于GMM中的某一个G auss ian分布,用G auss ian分布随机矢量的量化方法对LSF矢量进行了量化。利用准确的G auss ian分布变量量化误差,得到了G auss ian分布矢量的比特分配方法。应用G auss ian分布随机变量的非均匀量化方法量化每一维LSF参数。最后给出了分裂矢量量化、基于概率密度函数(probab ility dens ityfunction,PDF)量化方法和该算法的性能对比。该无记忆LSF量化算法在21 b/帧可以达到透明量化,比传统Sp litVQ节省3 b。展开更多
文摘This paper presents a voice conversion technique based on bilinear models and introduces the concept of contextual modeling. The bilinear approach reformulates the spectral envelope representation from line spectral frequencies feature to a two-factor parameterization corresponding to speaker identity and phonetic information, the so-called style and content factors. This decomposition offers a flexible representation suitable for voice conversion and facilitates the use of efficient training algorithms based on singular value decomposition. In a contextual approach (bilinear) models are trained on subsets of the training data selected on the fly at conversion time depending on the characteristics of the feature vector to be converted. The performance of bilinear models and context modeling is evaluated in objective and perceptual tests by comparison with the popular GMM-based voice conversion method for several sizes and different types of training data.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60305009)the Ph.D Degree Teacher Foundation of North China Electric Power University(Grant No.H0585).
文摘Automatic Question Answer System(QAS)is a kind of high-powered software system based on Internet.Its key technology is the interrelated technology based on natural language understanding,including the construction of knowledge base and corpus,the Word Segmentation and POS Tagging of text,the Grammatical Analysis and Semantic Analysis of sentences etc.This thesis dissertated mainly the denotation of knowledge-information based on semantic network in QAS,the stochastic syntax-parse model named LSF of knowledge-information in QAS,the structure and constitution of QAS.And the LSF model's parameters were exercised,which proved that they were feasible.At the same time,through "the limited-domain QAS" which was exploited for banks by us,these technologies were proved effective and propagable.