期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于DWT-LSTM的航道水位智能预测模型研究
被引量:
4
1
作者
倪汉杰
蒋仲廉
+1 位作者
初秀民
钟诚
《中国航海》
CSCD
北大核心
2021年第2期97-102,共6页
航道水位信息是内河船舶安全通航、合理配载的决策依据之一。为揭示内河航道水位特征、提高短时预测精度,提出了一种基于小波分析(DWT)和长短时记忆(LSTM)的耦合神经网络模型,以汉口水位站为例,验证了模型有效性,并与传统BP神经网络、...
航道水位信息是内河船舶安全通航、合理配载的决策依据之一。为揭示内河航道水位特征、提高短时预测精度,提出了一种基于小波分析(DWT)和长短时记忆(LSTM)的耦合神经网络模型,以汉口水位站为例,验证了模型有效性,并与传统BP神经网络、小波分析-BP神经网络和LSTM神经网络模型进行对比分析。研究结果表明:四类模型均可满足短时预测需求,合格率均大于90%;当航道水位变幅剧烈时,BP神经网络耦合模型误差较大;DWT-LSTM耦合神经网络模型性能较经典LSTM模型分别提升约10.9%(预测周期1-2天)、25.2%(预测周期3-5天)。研究成果可为船舶通航风险评估、航道条件分析等提供技术支撑。
展开更多
关键词
航道水位
智能预测
小波分析
lstm
神经网络
BP神经网络
下载PDF
职称材料
题名
基于DWT-LSTM的航道水位智能预测模型研究
被引量:
4
1
作者
倪汉杰
蒋仲廉
初秀民
钟诚
机构
武汉理工大学智能交通系统研究中心
武汉理工大学国家水运安全工程技术研究中心
武汉理工大学能源与动力工程学院
出处
《中国航海》
CSCD
北大核心
2021年第2期97-102,共6页
基金
国家重点研发计划专项(2018YFB1600400)
国家自然科学基金项目(52071250,51709220)
中央高校基本科研业务费专项资金项目(2018IVB078)
文摘
航道水位信息是内河船舶安全通航、合理配载的决策依据之一。为揭示内河航道水位特征、提高短时预测精度,提出了一种基于小波分析(DWT)和长短时记忆(LSTM)的耦合神经网络模型,以汉口水位站为例,验证了模型有效性,并与传统BP神经网络、小波分析-BP神经网络和LSTM神经网络模型进行对比分析。研究结果表明:四类模型均可满足短时预测需求,合格率均大于90%;当航道水位变幅剧烈时,BP神经网络耦合模型误差较大;DWT-LSTM耦合神经网络模型性能较经典LSTM模型分别提升约10.9%(预测周期1-2天)、25.2%(预测周期3-5天)。研究成果可为船舶通航风险评估、航道条件分析等提供技术支撑。
关键词
航道水位
智能预测
小波分析
lstm
神经网络
BP神经网络
Keywords
waterway Water level
intelligent prediction
wavelet analysis
lstm neuro network
BP
network
分类号
U675.7 [交通运输工程—船舶及航道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于DWT-LSTM的航道水位智能预测模型研究
倪汉杰
蒋仲廉
初秀民
钟诚
《中国航海》
CSCD
北大核心
2021
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部