期刊文献+
共找到4,699篇文章
< 1 2 235 >
每页显示 20 50 100
使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络预测盾构隧道施工引起的地面沉降
1
作者 黄茂庭 徐金明 《城市轨道交通研究》 北大核心 2024年第6期166-171,共6页
[目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测... [目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测。[方法]以某地铁施工区间地面沉降监测数据为研究对象,使用CNN对影响参数(压缩模量、黏聚力、内摩擦角、泊松比、土层厚度、隧道埋深和施工参数)与地面沉降监测值进行连接,使用LSTM神经网络对地面沉降进行分析,建立了基于CNN-LSTM联合神经网络的地面沉降预测模型,探讨了同时考虑多个因素对地面沉降预测值的影响。[结果及结论]使用CNN对地面沉降相关的影响参数特征提取效果较好;所建CNN-LSTM模型的准确率比单独使用LSTM模型的准确率提高了3%、比传统BP(反向传播)神经网络模型准确率提高了9%;所建CNN-LSTM模型,对单测点短时间地面沉降预测准确率达到93%,预测值与监测值吻合较好。 展开更多
关键词 盾构隧道施工 地面沉降 预测 卷积神经网络 长短期记忆神经网络
下载PDF
长短期记忆神经网络(LSTM)对风暴潮数值模拟的优化应用
2
作者 陈鸿生 林小刚 林晓珍 《海洋预报》 CSCD 北大核心 2024年第4期1-10,共10页
利用长短期记忆神经网络和数值模式相结合的方法,设计了两套针对粤东遮浪海洋站点台风风暴潮增水的预报优化方案。与实测资料对比结果显示,长短期记忆神经网络方法可以显著改善数值模式模拟结果的准确性,最大增水和主振过程中增水后报... 利用长短期记忆神经网络和数值模式相结合的方法,设计了两套针对粤东遮浪海洋站点台风风暴潮增水的预报优化方案。与实测资料对比结果显示,长短期记忆神经网络方法可以显著改善数值模式模拟结果的准确性,最大增水和主振过程中增水后报结果的平均绝对误差、平均相对误差和平均改善幅度分别为7.1 cm、8.2%、74%和16.1 cm、34.7%、33%。进一步分析表明,利用台风信息预测数值模拟结果的订正值可以有效改善神经网络方法的不稳定性,比直接预测风暴潮增水值更加准确、可靠。 展开更多
关键词 长短期记忆 神经网络 台风风暴潮 数值模拟
下载PDF
基于K均值聚类算法和LSTM神经网络的管道腐蚀阶段预测方法
3
作者 王新颖 刘岚 +2 位作者 陈海群 胡磊磊 谢逢豪 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期84-89,共6页
针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波... 针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波形为出发点,对模型进行参数优化,最后进行管道腐蚀阶段预测,并根据评价指标对模型进行评价。研究表明:对LSTM神经网络模型适当增加隐藏层,可以使得模型更加稳定,鲁棒性更好;与现有故障诊断模型相比,LSTM神经网络模型的精度更高。 展开更多
关键词 声发射无损检测 腐蚀阶段预测 K-MEANS聚类算法 长短期记忆(lstm)神经网络 鲁棒性
下载PDF
基于CNN-LSTM混合神经网络的高速铁路地震响应预测 被引量:2
4
作者 张学兵 谢啸楠 +1 位作者 王礼 吴晗 《湘潭大学学报(自然科学版)》 CAS 2024年第1期1-13,共13页
为了更好地挖掘高速铁路在地震时的响应信息,提高光纤光栅监测的效率及预测精度,该文针对地震响应数据的时序性及非线性的特点,提出卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合神经网络模型预测方法.通过在高速铁路简支梁桥上布设... 为了更好地挖掘高速铁路在地震时的响应信息,提高光纤光栅监测的效率及预测精度,该文针对地震响应数据的时序性及非线性的特点,提出卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合神经网络模型预测方法.通过在高速铁路简支梁桥上布设准分布式光纤光栅采集地震时轨道板、钢轨、底座板、箱梁的响应数据,在每根光纤上布置7个光栅,利用两边光栅的响应数据预测中间点的光栅响应,将采集位置、历史数据及地震波形等信息作为特征图输入.利用CNN提取特征,再将提前提取出来的特征数据以时序方式作为LSTM网络的输入数据,最后LSTM网络进行地震应变响应预测.实验结果表明,LSTM网络在3层时效果最好,CNN-LSTM方法具有较高的预测精度,根均平方误差(R_(RMSE))、平均绝对误差(R_(MAE))、决定系数(R^(2))分别达到了0.3753、0.2968、0.9371. 展开更多
关键词 准分布式光纤光栅 振动台试验 地震响应 卷积神经网络-长短期记忆网络混合模型
下载PDF
基于LSTM神经网络的现地烈度实时估算模型——以JMA烈度为例
5
作者 李山有 肖莹 +3 位作者 卢建旗 谢志南 马强 陶冬旺 《世界地震工程》 北大核心 2024年第3期37-45,共9页
如何快速并且准确估计目标场点烈度是地震预警中的关键问题。常用基于衰减关系的场点烈度估计和基于P波信息的现地烈度估计往往存在大震烈度低估的问题。本文提出了一种基于长短时记忆神经网络(logn short-term memery,LSTM)的现地JMA... 如何快速并且准确估计目标场点烈度是地震预警中的关键问题。常用基于衰减关系的场点烈度估计和基于P波信息的现地烈度估计往往存在大震烈度低估的问题。本文提出了一种基于长短时记忆神经网络(logn short-term memery,LSTM)的现地JMA烈度持续估计模型。该模型以现地观测地震动的能量、能量增长率、地震动卓越周期和震源距作为输入,以该点的最大仪器地震烈度为预测目标。选取了日本K-NET台网记录101次地震数据作为训练集,94次地震数据作为测试集,训练了现地烈度估算LSTM神经网络模型。结果表明:在采用3 s时窗长度的序列进行预测时,高估的比例为1.51%,低估的比例为4.00%;并且,随着时窗长度的增加,高估和低估的比例也在不断降低。模型对高烈度(大于等于4.5度)样本的预测时效性随震源距的增加而增加,对大震远场高烈度区域能提供20 s以上的预警时间。 展开更多
关键词 地震预警 现地预警 长短时记忆神经网络 实时减灾 烈度估计
下载PDF
基于LSTM神经网络的烟丝水分恒定控制系统设计
6
作者 王海龙 王新辉 +2 位作者 张志勇 朱岩 栾松年 《计算机测量与控制》 2024年第11期177-183,189,共8页
在烟丝加工过程中,水分分布受到温度、湿度多个因素的影响,控制系统无法准确反映整体水分情况;为全面提高加工型香烟的质量水平,设计基于LSTM神经网络的烟丝水分恒定控制系统;部署Profibus控制总线,并在线路体系中连接水分检测仪与水分... 在烟丝加工过程中,水分分布受到温度、湿度多个因素的影响,控制系统无法准确反映整体水分情况;为全面提高加工型香烟的质量水平,设计基于LSTM神经网络的烟丝水分恒定控制系统;部署Profibus控制总线,并在线路体系中连接水分检测仪与水分恒定器,完成烟丝水分恒定控制系统的硬件设计;在系统软件设计方面,构建LSTM神经网络单元,根据烟叶吸湿能力分析条件,求解具体的水分分布模型,实现基于LSTM神经网络的烟丝水分模型建模;分别计算烟叶出口湿度与出口温度,并联合传递函数逼近参量与恒定时滞参数,完成对控制参数的整定处理,再联合相关应用部件,实现基于LSTM神经网络的烟丝水分恒定控制系统设计;实验结果表明,LSTM神经网络模型作用下,生丝含水量被稳定控制在13%~18%数值之间,不会因水分过量问题而导致香烟质量水平无法达到实际加工标准。 展开更多
关键词 lstm神经网络 烟丝水分 恒定控制 PROFIBUS总线 吸湿能力 水分模型 出口湿度 出口温度
下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:1
7
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
下载PDF
基于足底压力和卷积长短期记忆神经网络的前交叉韧带断裂智能辅助诊断
8
作者 李玳 王天牧 +5 位作者 张思 秦跃 谢福贵 刘辛军 聂振国 黄红拾 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期109-117,共9页
提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,P... 提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,PressureConvLSTM模型对前交叉韧带断裂的辅助诊断,能够达到95%的预测准确度;与卷积神经网络等其他模型相比,准确度得到大幅度提升。 展开更多
关键词 智能诊断 前交叉韧带断裂 足底压力 深度学习 卷积长短期记忆神经网络
下载PDF
基于LSTM神经网络模型的铁矿石期货市场实证研究
9
作者 斯燕 陈艺 《中国集体经济》 2024年第2期100-103,共4页
随着国际大宗商品在金融和经济领域的影响力不断增强,会通过产业间的波及效应作用于物价水平,进而影响到国家的经济增长。近几年掀起了机器学习研究的热潮,基于机器学习的投资量化分析也越来越受到关注。文章基于LSTM神经网络模型,选取... 随着国际大宗商品在金融和经济领域的影响力不断增强,会通过产业间的波及效应作用于物价水平,进而影响到国家的经济增长。近几年掀起了机器学习研究的热潮,基于机器学习的投资量化分析也越来越受到关注。文章基于LSTM神经网络模型,选取了2021年9月至12月底的铁矿石主力合约高频数据建立了趋势预测模型。实验结果表明,该模型拟合良好,能够较好地预测铁矿石期货短期内的趋势。 展开更多
关键词 机器学习 lstm神经网络模型 铁矿石期货 量化投资
下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测
10
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 风电功率预测 密度聚类 自适应噪声完备集成经验模态分解 卷积神经网络 长短期记忆网络
下载PDF
基于长短期记忆神经网络的在线学习眼动认知层次智能识别模型
11
作者 薛耀锋 陈瞻 +1 位作者 邱奕盛 刘俊宏 《现代远距离教育》 CSSCI 2024年第5期70-78,共9页
学习者对于所学知识的认知水平与其在线学习的体验和效果密切相关,衡量在线学习者的认知水平具有重要意义。本研究基于布鲁姆的认知理论将学习者的认知水平划分为低、中、高三个层次,追踪学生在线学习过程中产生的眼动数据,采用主成分... 学习者对于所学知识的认知水平与其在线学习的体验和效果密切相关,衡量在线学习者的认知水平具有重要意义。本研究基于布鲁姆的认知理论将学习者的认知水平划分为低、中、高三个层次,追踪学生在线学习过程中产生的眼动数据,采用主成分分析法聚合相关性高的特征指标,达到保留有效信息且维度下降的效果,接着运用长短期记忆神经网络构建在线学习认知层次智能识别模型,并与其他6种机器学习方法进行了比较。研究结果表明,学习者的眼动指标和认知层次显著相关。同时,在模型性能方面,长短期记忆神经网络模型的性能显著高于其他模型,具有较高的测试准确率和F1分数,证明其在在线学习认知水平评估领域的有效性。本研究不仅丰富了在线学习认知领域的理论和实践,而且为在线课程设计、在线学习评价、学习资源优化等提供了强有力的支持。 展开更多
关键词 在线学习 认知分层 眼动追踪 长短期记忆神经网络 智能识别
下载PDF
基于CNN-LSTM混合神经网络的卷烟滤棒质量预测
12
作者 王红斌 李志文 《长春理工大学学报(自然科学版)》 2024年第4期67-73,共7页
为了在卷烟生产数据中挖掘出滤棒生产过程的有效信息,解决各批次产品质量检测困难的问题,结合卷积神经网络的特征提取能力与长短期记忆网络处理时序数据的有效性,提出了基于CNN-LSTM混合神经网络的卷烟滤棒质量预测模型。该模型通过卷... 为了在卷烟生产数据中挖掘出滤棒生产过程的有效信息,解决各批次产品质量检测困难的问题,结合卷积神经网络的特征提取能力与长短期记忆网络处理时序数据的有效性,提出了基于CNN-LSTM混合神经网络的卷烟滤棒质量预测模型。该模型通过卷积层提取输入数据的局部特征,然后在LSTM层中捕捉特征之间的时序关系,分层结构使其具有同时处理不同时间维度信息的能力,从而提升了预测精度。将滤棒的质量定义为圆周值与吸阻值两个物理量,利用卷烟厂6万余条实时生产数据进行模型训练和预测,结果表明:以平均绝对百分误差(MAPE)作为评价标准,圆周指标预测误差为0.078%,吸阻指标预测误差为1.42%,对比各类传统机器学习方法,CNN-LSTM混合神经网络表现出了更高的精确性。该方法可为快速准确地预测卷烟滤棒质量提供技术支持,提升烟草工业的自动化水平。 展开更多
关键词 滤棒成型 深度学习 卷积神经网络 长短期记忆网络
下载PDF
一种采用记忆神经网络和曲线形状修正的负荷预测方法
13
作者 张家安 李凤贤 +1 位作者 王铁成 郝妍 《电力工程技术》 北大核心 2024年第1期117-126,共10页
针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输... 针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆(bidirectional long short-term memory,BiLSTM)神经网络建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日,建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型,对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。 展开更多
关键词 超短期负荷预测 Attention机制 双向长短时记忆(Bilstm)神经网络 负荷峰值 负荷标幺曲线 曲线形状修正
下载PDF
基于改进LSTM神经网络的电动汽车充电负荷预测 被引量:2
14
作者 林祥 张浩 +1 位作者 马玉立 陈良亮 《现代电子技术》 北大核心 2024年第6期97-101,共5页
当前对电动汽车(EV)充电负荷预测的研究缺少真实的数据支撑,并且模型考虑场景过于简单,影响因素考虑不到位,预测结果缺乏说服力。基于此,提出一种考虑多种电动汽车充电负荷影响因素的电动汽车充电负荷预测方法。首先,考虑天气、季节、... 当前对电动汽车(EV)充电负荷预测的研究缺少真实的数据支撑,并且模型考虑场景过于简单,影响因素考虑不到位,预测结果缺乏说服力。基于此,提出一种考虑多种电动汽车充电负荷影响因素的电动汽车充电负荷预测方法。首先,考虑天气、季节、温度、工作日、节假日等因素对电动汽车充电负荷的影响,采用三标度层次分析法分析各影响因素权重;其次,建立LSTM神经网络预测模型,通过真实数据训练得到用于预测的LSTM神经网络模型,结合影响因素权重分析结果对预测模型进行修正,得到最终的改进LSTM神经网络负荷预测模型;最后,采用常州某小区的真实数据对所提预测方法进行试验验证。结果表明,所提方法可以实现电动汽车充电负荷的精确预测,且负荷预测结果可为有序充电策略研究提供参考。 展开更多
关键词 电动汽车 充电负荷预测 lstm神经网络模型 影响因素权重 层次分析法 有序充电
下载PDF
环境温度影响下基于LSTM神经网络识别结构损伤 被引量:1
15
作者 黄炎 葛思源 +1 位作者 翟慕赛 常军 《计算力学学报》 CAS CSCD 北大核心 2024年第2期248-255,共8页
环境温度的改变会引起模态参数的变化,其变化程度会掩盖或部分掩盖损伤引起的变化量,导致结构健康监测系统发出假阳性或假阴性的误判,因此,消除温度效应是提高损伤识别精度的关键。本文基于LSTM神经网络提出了一种环境温度影响下识别结... 环境温度的改变会引起模态参数的变化,其变化程度会掩盖或部分掩盖损伤引起的变化量,导致结构健康监测系统发出假阳性或假阴性的误判,因此,消除温度效应是提高损伤识别精度的关键。本文基于LSTM神经网络提出了一种环境温度影响下识别结构损伤的方法。充分利用LSTM神经网络的非线性映射优势,建立多元温度-模态频率的相关模型,在此基础上采用数据标准化方法消除温度效应,并结合控制图判断模态频率异常变化以确定损伤状况。最后将所提方法在数值模型和实际桥梁中加以应用,结果表明,方法能够有效消除温度效应;结合控制图能识别损伤时刻,并具有一定的抗噪性;在实桥数据分析中仍能表现出较好的损伤敏感性。 展开更多
关键词 lstm神经网络 结构健康监测 温度 模态频率 变分模态分解
下载PDF
基于LSTM神经网络深度序列机械钻速实时预测 被引量:1
16
作者 冯义 朱亮 +4 位作者 杨立军 李慎越 席俊卿 陈芳 纪慧 《西安石油大学学报(自然科学版)》 北大核心 2024年第1期122-128,共7页
机械钻速是钻井优化、缩短钻井周期的关键因素,传统的机械钻速预测大多是在钻井后进行钻井分析,预测效率和精度低、地层适用性不广。为了以更高效的方法预测得到高精度机械钻速,提出基于长短期记忆(LSTM)神经网络的深度序列机械钻速预... 机械钻速是钻井优化、缩短钻井周期的关键因素,传统的机械钻速预测大多是在钻井后进行钻井分析,预测效率和精度低、地层适用性不广。为了以更高效的方法预测得到高精度机械钻速,提出基于长短期记忆(LSTM)神经网络的深度序列机械钻速预测方法。采集实时钻井数据集,使用皮尔逊相关系数衡量各特征之间的相关性,筛选出井深、伽玛射线、地层密度、孔隙压力、井径、钻时、排量、钻井液密度等8个参数。构建LSTM神经网络模型,训练LSTM模型并预测ROP,对预测结果进行分析,并用决定系数(R^(2))、均方根误差(RMSE)、平均绝对百分比误差(MAPE)等指标对LSTM模型、BP模型和SVM模型性能进行对比分析。结果表明:LSTM模型其R^(2)、RMSE和MAPE的值分别为0.948、1.151和17.075,相较于BP模型和SVM模型,其R^(2)更大,RMSE和MAPE较小,说明LSTM模型预测性能更好。该方法有助于钻井工程师和决策者提前获得钻井信息,从而更好地规划钻井作业,缩短钻井周期,同时为钻井参数预测提供新的途径,能改善以往预测方法在处理复杂地层问题时效率不高、预测精度低等问题。 展开更多
关键词 机械钻速 lstm神经网络 深度序列 实时预测 人工智能 深度学习
下载PDF
基于LSTM神经网络的牵引站电气设备耦联体系地震响应预测 被引量:2
17
作者 郭彦颜 陈雅芳 +3 位作者 何畅 余玉洁 何紫薇 蒋丽忠 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第4期1602-1612,共11页
铁路牵引变电站中,软导线-电气设备耦联体系具有较强的几何非线性。为提升系统分析效率,提出一种改进的软导线-电气设备耦联体系地震响应递归预测方法。基于长短期记忆(long short-term memory,LSTM)神经网络与Dropout防止过拟合技术搭... 铁路牵引变电站中,软导线-电气设备耦联体系具有较强的几何非线性。为提升系统分析效率,提出一种改进的软导线-电气设备耦联体系地震响应递归预测方法。基于长短期记忆(long short-term memory,LSTM)神经网络与Dropout防止过拟合技术搭建了LSTM神经网络预测模型。建立了充分考虑软导线对相邻设备的耦联作用的软导线-电气设备耦联体系理论分析模型。为验证预测模型的泛化能力,筛选出了41条在峰值、频谱和持续时间上具有较大差异的地震波。并按照递归方案,将选取的地震波以及软导线-电气设备耦联体系理论分析模型计算所得的位移响应,进行滑动切片处理,建立模型输入特征与输出响应标签的映射关系。在此基础上,利用该LSTM神经网络预测模型开展了软导线-电气设备耦联体系设备的地震位移响应预测,并采用多个评价指标进行较为全面的模型性能评估。研究结果表明:LSTM递归预测模型具有良好的地震响应预测性能,搭配Dropout技术能够有效防止模型训练过拟合,提高模型适应能力。对于差异较大的地震波数据,均能够快速预测出误差较小、相关度较高的地震响应,具有较好的准确性、高效性与泛化能力。所提方法能够较高效准确地预测任意时刻的软导线-电气设备耦联体系地震响应,为铁路牵引变电站抗震设计提供新的研究思路。 展开更多
关键词 长短期记忆神经网络 电气设备 软导线 耦联体系 地震响应预测
下载PDF
基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报 被引量:1
18
作者 蒋春华 朱美珍 +1 位作者 薛慧杰 刘广盛 《大地测量与地球动力学》 CSCD 北大核心 2024年第3期257-262,共6页
针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利... 针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利用LSTM模型、QP模型、QP-LSTM模型分别基于12 h和24 h钟差序列进行建模,预报1 h、3 h、6 h、12 h钟差。结果表明,LSTM模型建模24 h、预报1 h精度最高。multi-GNSS卫星钟差LSTM预报模型中Galileo系统精度最高,其次为BDS-2系统和GPS系统,GLONASS系统精度最低,精度分别为0.018 ns、0.069 ns、0.133 ns、0.242 ns。不同原子钟预报精度不同,氢原子钟预报精度优于铷原子钟、铯原子钟。LSTM神经网络模型预报精度相较于QP-LSTM模型提升27%,相较于QP模型提升36%。 展开更多
关键词 长短时记忆神经网络(lstm) 二次多项式模型 QP-lstm模型 multi-GNSS卫星钟差预报
下载PDF
基于TSO-LSTM神经网络的股票收益率均值预测模型及其在智能投资中的应用
19
作者 刘和扬 申飞飞 杨柳 《湘潭大学学报(自然科学版)》 CAS 2024年第5期101-111,共11页
根据股票收益的历史数据,建立数据和模型双驱动的智能资产配置系统,指导股民投资实现收益最大化.使用金枪鱼群优化(TSO)算法寻参的长短期记忆(LSTM)神经网络为分布鲁棒优化投资组合模型提供收益率的均值与协方差矩阵,求解更符合实际情... 根据股票收益的历史数据,建立数据和模型双驱动的智能资产配置系统,指导股民投资实现收益最大化.使用金枪鱼群优化(TSO)算法寻参的长短期记忆(LSTM)神经网络为分布鲁棒优化投资组合模型提供收益率的均值与协方差矩阵,求解更符合实际情况的分布鲁棒模型得到投资方案.该模型提出的方案在未来前10 d的收益明显高于直接使用历史均值的分布鲁棒模型,亏损天数少于直接使用历史均值的分布鲁棒模型和平均分配资金的方案.同时该文提出的决策系统随着时间的推移,可以通过更新历史数据重新训练LSTM网络,使得模型保持良好的效果.TSO-LSTM神经网络能有效地抓住股票收益率的历史数据特征,实时动态地为投资者提供良好的投资决策. 展开更多
关键词 lstm神经网络 分布鲁棒投资组合优化 金枪鱼群优化算法 CVaR模型约束
下载PDF
基于LSTM神经网络的机载光纤陀螺温度冲击误差补偿技术 被引量:1
20
作者 何昆鹏 赵瑾玥 +3 位作者 周琪 蒋昱飞 任永甲 涂勇强 《航空科学技术》 2024年第2期31-38,共8页
环境温度冲击会降低机载光纤陀螺的性能,从而影响飞行器导航和姿态控制精度。在光纤陀螺误差机理研究基础上,本文提出一种基于长短期记忆(LSTM)神经网络的光纤陀螺温度误差补偿模型。该模型通过LSTM网络对光纤陀螺的零偏和标度因数进行... 环境温度冲击会降低机载光纤陀螺的性能,从而影响飞行器导航和姿态控制精度。在光纤陀螺误差机理研究基础上,本文提出一种基于长短期记忆(LSTM)神经网络的光纤陀螺温度误差补偿模型。该模型通过LSTM网络对光纤陀螺的零偏和标度因数进行实时预测和校正,提高光纤陀螺的测量精度。试验结果表明,在温度冲击下,LSTM预测模型补偿后的标度因数误差小于30ppm,零偏稳定性比常规的线性拟合补偿模型提高0.0034(°)/h。这意味着输出更准确地反映实际角速度值,陀螺仪的零偏漂移更小,输出更接近于零值。动态试验中转台输入为20(°)/s时,LSTM补偿后陀螺输出稳定在19.999~20.001(°)/s区间内,相较于陀螺原始输出误差降低0.008(°)/s。通过LSTM预测模型补偿,能够在环境变化、外部扰动或传感器故障时,通过陀螺仪提供更可靠的数据支持,维持飞行器的稳定性和安全性。 展开更多
关键词 光纤陀螺仪 温度冲击 零偏 标度因数 lstm神经网络
下载PDF
上一页 1 2 235 下一页 到第
使用帮助 返回顶部