期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于自然驾驶数据的分心驾驶行为识别方法
被引量:
27
1
作者
孙剑
张一豪
王俊骅
《中国公路学报》
EI
CAS
CSCD
北大核心
2020年第9期225-235,共11页
大量证据表明,驾驶人分心是导致交通事故的主要原因之一。当前基于侵入式(如脑电波等)或半侵入式(如视频等)检测驾驶人分心的方法,不仅对驾驶任务造成一定干扰,且受多种环境因素的制约,误报率较高。基于此,只考虑非侵入式车辆运动特征,...
大量证据表明,驾驶人分心是导致交通事故的主要原因之一。当前基于侵入式(如脑电波等)或半侵入式(如视频等)检测驾驶人分心的方法,不仅对驾驶任务造成一定干扰,且受多种环境因素的制约,误报率较高。基于此,只考虑非侵入式车辆运动特征,提出一种基于深度学习的驾驶人分心状态识别方法:首先,从自然驾驶数据集中获得大量的跟驰片段,采用态势感知方法,提取典型的分心驾驶片段,并建立仅包含车辆运动学特征的分心判别指标集;其次,利用梯度提升决策树-递归特征消除算法(GBDT-RFE)和随机森林-递归特征消除算法(RF-RFE)对特征进行重要度排序,得到重要度较高的分心监测指标;最后,采用长短时记忆神经网络(LSTM-NN)实现分心驾驶的分类识别,并与支持向量机和AdaBoost的模型结果进行对比。研究结果表明:LSTM-NN在判别分心或正常状态时F1分别为89%、91%,高于SVM和AdaBoost对应二分类结果;进行多分类任务时,判别分心情景的平均F1较SVM和AdaBoost分别提升了12%和7%,不同类别分心识别的误报率在15%以下,说明LSTM-NN能够有效学习分心序列的前后信息,有利于准确估计驾驶人的状态。研究结果可为车辆分心预警系统和驾驶风险倾向性评估提供方法基础。
展开更多
关键词
交通工程
分心驾驶
lstm-nn模型
自然驾驶数据
车辆运动特征
递归特征消除算法
原文传递
题名
基于自然驾驶数据的分心驾驶行为识别方法
被引量:
27
1
作者
孙剑
张一豪
王俊骅
机构
同济大学道路与交通工程教育部重点实验室
同济大学道路交通安全与环境教育部工程研究中心
出处
《中国公路学报》
EI
CAS
CSCD
北大核心
2020年第9期225-235,共11页
基金
国家重点研发计划项目(2018YFB1600505)
国家自然科学基金重点项目(U1764261)。
文摘
大量证据表明,驾驶人分心是导致交通事故的主要原因之一。当前基于侵入式(如脑电波等)或半侵入式(如视频等)检测驾驶人分心的方法,不仅对驾驶任务造成一定干扰,且受多种环境因素的制约,误报率较高。基于此,只考虑非侵入式车辆运动特征,提出一种基于深度学习的驾驶人分心状态识别方法:首先,从自然驾驶数据集中获得大量的跟驰片段,采用态势感知方法,提取典型的分心驾驶片段,并建立仅包含车辆运动学特征的分心判别指标集;其次,利用梯度提升决策树-递归特征消除算法(GBDT-RFE)和随机森林-递归特征消除算法(RF-RFE)对特征进行重要度排序,得到重要度较高的分心监测指标;最后,采用长短时记忆神经网络(LSTM-NN)实现分心驾驶的分类识别,并与支持向量机和AdaBoost的模型结果进行对比。研究结果表明:LSTM-NN在判别分心或正常状态时F1分别为89%、91%,高于SVM和AdaBoost对应二分类结果;进行多分类任务时,判别分心情景的平均F1较SVM和AdaBoost分别提升了12%和7%,不同类别分心识别的误报率在15%以下,说明LSTM-NN能够有效学习分心序列的前后信息,有利于准确估计驾驶人的状态。研究结果可为车辆分心预警系统和驾驶风险倾向性评估提供方法基础。
关键词
交通工程
分心驾驶
lstm-nn模型
自然驾驶数据
车辆运动特征
递归特征消除算法
Keywords
traffic engineering
distraction driving
lstm-nn
model
naturalistic driving data
vehicle kinematic features
recursive feature elimination algorithm
分类号
U491.6 [交通运输工程—交通运输规划与管理]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于自然驾驶数据的分心驾驶行为识别方法
孙剑
张一豪
王俊骅
《中国公路学报》
EI
CAS
CSCD
北大核心
2020
27
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部