This article presents downlink initial synchronization and cell identification algorithms for long term evolution (LTE) of third-generation (3G) mobile communication systems, which are based on synchronization cha...This article presents downlink initial synchronization and cell identification algorithms for long term evolution (LTE) of third-generation (3G) mobile communication systems, which are based on synchronization channel (SCH) and cell specific pilot symbols, respectively. The key features of the proposed scheme are: it can improve performance of the frequency synchronization through oversampling of the SCH, it can support a large number of target cells by modulating a cell-specific pilot sequence over two symbols within a subframe, and it can guarantee cell identification performance by maximally ratio combining the frequency domain differential cross-correlation. Simulations show that the proposed scheme has a potential use in 3G LTE.展开更多
基金the Cooperative Research between Beijing University of Posts and Telecommunications and TD Tech Ltd. and the National Natural Science Foundation of China (60302025).
文摘This article presents downlink initial synchronization and cell identification algorithms for long term evolution (LTE) of third-generation (3G) mobile communication systems, which are based on synchronization channel (SCH) and cell specific pilot symbols, respectively. The key features of the proposed scheme are: it can improve performance of the frequency synchronization through oversampling of the SCH, it can support a large number of target cells by modulating a cell-specific pilot sequence over two symbols within a subframe, and it can guarantee cell identification performance by maximally ratio combining the frequency domain differential cross-correlation. Simulations show that the proposed scheme has a potential use in 3G LTE.