This paper addresses the development and testing of a remotely controlled boat platform with an innovative air-ventilated hull. The application of air cavities on the underside of ship hulls is a promising means for r...This paper addresses the development and testing of a remotely controlled boat platform with an innovative air-ventilated hull. The application of air cavities on the underside of ship hulls is a promising means for reducing hydrodynamic drag and pollutant emissions and increasing marine transportation efficiency. Despite this concept's potential, design optimization and high-performance operation of novel air-cavity ships remain a challenging problem. Hull construction and sensor instrumentation of the model-scale air-cavity boat is described in the paper. The modular structure of the hull allows for easy modifications, and an electric propulsion unit enables self-propelled operation. The boat is controlled remotely via a radio transmission system. Results of initial tests are reported, including thrust, speed, and airflow rate in several loading conditions. The constructed platform can be used for optimizing air-cavity systems and testing other innovative hull designs. This system can be also developed into a high-performance unmanned boat.展开更多
To investigate the natural frequencies and towing behaviors of a 3-bucket foundation platform at different drafts, the decay and towing experiments were carried out in a towing tank on a scale of 1:20. The air pressur...To investigate the natural frequencies and towing behaviors of a 3-bucket foundation platform at different drafts, the decay and towing experiments were carried out in a towing tank on a scale of 1:20. The air pressure inside the bucket foundations, the water pressure at the bottom of the bucket foundations, the acceleration of the platform and the towing force were determined in the test process. The time-history curves of the measured parameters were obtained, and the frequency responses of the parameters at different drafts were analyzed by means of fast Fourier transform(FFT). The results showed that the platform natural frequency of heave decreased slightly with the rise of draft. The natural frequencies of roll and pitch are much lower than that of heave, and they increased slightly with the increase of draft. When towing in the following sea, the maximum acceleration of surge, sway and heave has downward trends with the increase of draft, but the change range decreased gradually with the increase of draft. When the draft is 5.0 m(the ratio of draft to bucket height is 0.56), the towing dynamic responses achieve the maximum, which is not conducive to the towing of the platform. When the draft is 6.0 m(the ratio of draft to bucket height is 0.67), the towing dynamic responses are the most stable.展开更多
A novel asymmetrical pitch system for rotary wing is presented. The pitch control characteristics are studied and analyzed. Because elastic linkage is a key part in whole asymmetrical pitch system, in order to obtain ...A novel asymmetrical pitch system for rotary wing is presented. The pitch control characteristics are studied and analyzed. Because elastic linkage is a key part in whole asymmetrical pitch system, in order to obtain the variation of the elastic linkage deformation, an experimental platform mainly based on the device of micro aerial vehicles (MAVs) and a new control system mounted on TMS320LF2407 are designed. This control system has its compacted configuration and reliability. Finally, using this system to control the MAV for simulating the flying forward, experimental results show the MAV's flight attitude can he controlled based on the variation of the elastic linkage.展开更多
Informationization plays an important role in modern life and production.And various software is one of the bases for it.Before it goes into service,software needs to go through many steps,including software developme...Informationization plays an important role in modern life and production.And various software is one of the bases for it.Before it goes into service,software needs to go through many steps,including software development,design,etc.In software development,test is the key to identify and control bugs and errors in the software.Therefore,software companies often test the software to ensure that it is qualified.In recent years,more attention has been paid to a multi-platform computer software testing method,which can make up for defects in traditional testing methods to improve test accuracy.Firstly,this paper illustrates the connotation and features of software testing.Secondly,common software testing platforms and their requirements are analyzed.Finally,this paper proposes software testing method based on multiple platforms.展开更多
With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfie...With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfield development.However,traditional simple wellhead platforms are often discarded after a single use.In pursuit of a more costeffective approach to developing marginal oilfields,this paper proposes a new offshore oil field development facility—an integrated bucket foundation for wellhead platform.To verify the safety of its towing behavior and obtain the dynamic response characteristics of the structure,this paper takes a bucket integrated bucket foundation for wellhead platform with a diameter of 40 m as the research object.By combining physical model tests and numerical simulations,it analyzes the static stability and dynamic response characteristics of the structure during towing,complete with the effects of the draft,wave height,wave period,and towing point height,which produce the dynamic responses of the structure under different influence factors,such as roll angle,pitch angle,heave acceleration and towing force as well as the sensibility to transport variables.The results show that the integrated bucket foundation for wellhead platform is capable of self-floating towing,and its movement is affected by the local environment,which will provide a reference for actual projects.展开更多
In order to improve efficiency of the integrated test of a launch vehicle electrical system while meeting the requirement of high-density,a cloud test platform for the electrical system was designed based on a data-dr...In order to improve efficiency of the integrated test of a launch vehicle electrical system while meeting the requirement of high-density,a cloud test platform for the electrical system was designed based on a data-driven approach,using secure private cloud technology and virtualization technology.The platform has a general hardware and software architecture,which integrates the functions of graphical editing,automated testing,data processing,fault diagnosis and so on.It can realize multi-task parallel testing.Compared with the traditional test mode,the platform has obvious advantages on testing eficiency and effectiveness.展开更多
An inevitable trend has already taken shape for the application of the 5th Generation Mobile Communication Technology(5G)in the railway sector.The application scenarios and business types of the railway sector are com...An inevitable trend has already taken shape for the application of the 5th Generation Mobile Communication Technology(5G)in the railway sector.The application scenarios and business types of the railway sector are complex and diverse,so it is indispensable to test and verify the railway 5G before actual deployment.The design and creation of the railway 5G integrated innovation test platform provides engineering design,test and verification conditions for the networking,coverage and business development of 5G public networks and 5G-R in railway scenarios.This paper introduces the design of the overall architecture for the integrated railway 5G innovation test platform according to the railway network requirements,application scenarios and intelligent development trend;respectively elaborates on the design of the 5G-R core network,bearer network and wireless access along loop tracks,in combination with the characteristics of railway scenarios and the requirements of railway dispatching,operation and safety;raises further solutions on the network deployment and coverage schemes of 5G public networks so as to meet the application requirements of 5G public networks.The study results show that the integrated railway 5G innovation test platform scheme contains co-existence of 5G public and private networks,combines the indoor and outdoor scenarios,as well as takes into account of the dynamic and static tests so as to meet the environmental requirements for the integrated railway 5G test and application of all network functions,for which it can provide comprehensive technical support for railway 5G technology research and development,standard formulation,testing,etc.展开更多
Beijing Aerospace System Engineering Institute of China Academy of Launch Vehicle Technology (CALT) declared recently that theinstitute has set up a laboratory whichwould operate a newly
An S-lay crane barge,named CNOOC 201,has been built for pipe laying in deepwater oil/gas fields in the South China Sea.It is due to be commissioned by the end of the year 2010.A special lifting system is developed to ...An S-lay crane barge,named CNOOC 201,has been built for pipe laying in deepwater oil/gas fields in the South China Sea.It is due to be commissioned by the end of the year 2010.A special lifting system is developed to meet the challenge that installing deepwater risers from an S-lay barge is difficult and has not been achieved.The purpose of this paper was to investigate the model test on such an innovative system,which has to be done before field application.By applying the similarity theory,the movement of the S-lay barge is simulated through a six degrees-of-freedom motion platform,and a truncated model riser is utilized for the model testing.The displacement and force boundary conditions at the truncated position of the riser are obtained from the catenary governing equation and become realized by a slideway cart and a loading system designed to control the configuration of the model riser,which presents a similar configuration to a real riser in deepwater.The test results are in very good agreement with theoretical calculations,showing that the active truncated test is applicable for controlling the configuration of the deepwater riser in model testing investigation.展开更多
Spar technology has been applied to the deep-sea oil and gas exploitation for several years. From the first generation of classic spar, the spar platform has developed into the second generation of truss spar and the ...Spar technology has been applied to the deep-sea oil and gas exploitation for several years. From the first generation of classic spar, the spar platform has developed into the second generation of truss spar and the latest cell spar. Owing to its favorable adaptability to wide range of water depth and benign motion performances, spar has aroused quite a lot of interests from oil companies, universities and research institutes. In the present paper, a new cell-truss spar concept, put forward by the State Key Laboratory of Ocean Engineering (SKLOE) at Shanghai Jiao Tong University, is studied both numerically and experimentally. The numerical simulation was conducted by means of nonlinear time-domain fully coupled analysis, and its results were compared to the experimental data. Whereafter, detailed analysis was carried out to obtain the global performances of' the new spar concept. Proposals for the improvement of numerical calculation and experimental technique were tabled meanwhile.展开更多
Steel jacket-type platforms are the common kind of the offshore structures and health monitoring is an important issue in their safety assessment. In the present study, a new damage detection method is adopted for thi...Steel jacket-type platforms are the common kind of the offshore structures and health monitoring is an important issue in their safety assessment. In the present study, a new damage detection method is adopted for this kind of structures and inspected experimentally by use of a laboratory model. The method is investigated for developing the robust damage detection technique which is less sensitive to both measurement and analytical model uncertainties. For this purpose, incorporation of the artificial immune system with weighted attributes (AISWA) method into finite element (FE) model updating is proposed and compared with other methods for exploring its effectiveness in damage identification. Based on mimicking immune recognition, noise simulation and attributes weighting, the method offers important advantages and has high success rates. Therefore, it is proposed as a suitable method for the detection of the failures in the large civil engineering structures with complicated structural geometry, such as the considered case study.展开更多
The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at...The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at platform. To optimize the process parameters during investment casting to minimize the warping deformation of the platform, based on simulation with Pro CAST, the single factor method, orthogonal test, neural network and genetic algorithm were subsequently used to analyze the influence of pouring temperature, shell mold preheating temperature, furnace temperature and withdrawal velocity on dimensional accuracy of the platform of superalloyDD6 turbine blade. The accuracy of investment casting simulation was verified by measurement of platform at blade casting. The simulation results with the optimal process parameters illustrate that the equivalent warping deformation was dramatically reduced by 21.8% from 0.232295 mm to 0.181698 mm.展开更多
Modal strain energy based methods for damage detection have received much attention. However, most of published articles use numerical methods and some studies conduct modal tests with simple 1D or 2D structures to ve...Modal strain energy based methods for damage detection have received much attention. However, most of published articles use numerical methods and some studies conduct modal tests with simple 1D or 2D structures to verify the damage detection algorithms. Only a few studies utilize modal testing data from 3D frame structures. Few studies conduct performance comparisons between two different modal strain energy based methods. The objective of this paper is to investigate and compare the effectiveness of a traditional modal strain energy method(Stubbs index) and a recently developed modal strain energy decomposition(MSED) method for damage localization, for such a purpose both simulated and measured data from an offshore platform model being used. Particularly, the mode shapes used in the damage localization are identified and synthesized from only two measurements of one damage scenario because of the limited number of sensors. The two methods were first briefly reviewed. Next, using a 3D offshore platform model, the damage detection algorithms were implemented with different levels of damage severities for both single damage and multiple damage cases. Finally, a physical model of an offshore steel platform was constructed for modal testing and for validating the applicability. Results indicate that the MSED method outperforms the Stubbs index method for structural damage detection.展开更多
The Daocheng site is one of the three candidate sites for the Large Optical/infrared Telescope(LOT)of China.It was discovered by Yunnan Observatories during the survey of potential sites for the next-generation large-...The Daocheng site is one of the three candidate sites for the Large Optical/infrared Telescope(LOT)of China.It was discovered by Yunnan Observatories during the survey of potential sites for the next-generation large-aperture solar telescopes of China.This paper describes the overview of the site,the observation platform and the monitor instrument.In addition,simple statistical results are presented(from November,2016 up to December,2017).Detailed data results can refer to the overview of LOT site testing and data analysis articles,which were published during the same period.展开更多
The dynamic system control circuit board(DSCCB)is one of the most important components for dynamic system of pure electric vehicles. The current detection of the DSCCB is done manually, which is not only inefficient i...The dynamic system control circuit board(DSCCB)is one of the most important components for dynamic system of pure electric vehicles. The current detection of the DSCCB is done manually, which is not only inefficient in the detection but also difficult to guarantee the data accuracy. In order to improve the detection efficiency and accuracy, a new testing system is designed by Labview. The total test time can be further reduced by about 75% compared with the results of the manual detection. In this paper, the three-parameter sine wave curve-fit algorithm theory is applied to the phase delay detection of the current sensor sampling circuit on the DSCCB. This method solves the problem of big error in the phase delay detection.展开更多
基金Foundation item: Supported by the National Science Foundation (CMMI-1026264 and EEC-1157094).
文摘This paper addresses the development and testing of a remotely controlled boat platform with an innovative air-ventilated hull. The application of air cavities on the underside of ship hulls is a promising means for reducing hydrodynamic drag and pollutant emissions and increasing marine transportation efficiency. Despite this concept's potential, design optimization and high-performance operation of novel air-cavity ships remain a challenging problem. Hull construction and sensor instrumentation of the model-scale air-cavity boat is described in the paper. The modular structure of the hull allows for easy modifications, and an electric propulsion unit enables self-propelled operation. The boat is controlled remotely via a radio transmission system. Results of initial tests are reported, including thrust, speed, and airflow rate in several loading conditions. The constructed platform can be used for optimizing air-cavity systems and testing other innovative hull designs. This system can be also developed into a high-performance unmanned boat.
基金Supported by the National Natural Science Foundation of China(No.51309179)Tianjin Municipal Natural Science Foundation(No.14JCQNJC07000)the State Key Laboratory of Hydraulic Engineering Simulation and Safety(Tianjin University)
文摘To investigate the natural frequencies and towing behaviors of a 3-bucket foundation platform at different drafts, the decay and towing experiments were carried out in a towing tank on a scale of 1:20. The air pressure inside the bucket foundations, the water pressure at the bottom of the bucket foundations, the acceleration of the platform and the towing force were determined in the test process. The time-history curves of the measured parameters were obtained, and the frequency responses of the parameters at different drafts were analyzed by means of fast Fourier transform(FFT). The results showed that the platform natural frequency of heave decreased slightly with the rise of draft. The natural frequencies of roll and pitch are much lower than that of heave, and they increased slightly with the increase of draft. When towing in the following sea, the maximum acceleration of surge, sway and heave has downward trends with the increase of draft, but the change range decreased gradually with the increase of draft. When the draft is 5.0 m(the ratio of draft to bucket height is 0.56), the towing dynamic responses achieve the maximum, which is not conducive to the towing of the platform. When the draft is 6.0 m(the ratio of draft to bucket height is 0.67), the towing dynamic responses are the most stable.
基金supported by the National Natural Science Foundation of China (Grant No.60605028)the National High-Technology Research and Development Program of China (Grant No.2007AA04Z225)+2 种基金the Shanghai Rising-Star Program (Grant Nos.07QA14024, 07QH14006)the Shanghai Shuguang Program (Grant No.07SG47)the Shanghai Leading Key Laboratory of Mechanical Automation and Robotics Science Foundation (Grant No.ZZ0805)
文摘A novel asymmetrical pitch system for rotary wing is presented. The pitch control characteristics are studied and analyzed. Because elastic linkage is a key part in whole asymmetrical pitch system, in order to obtain the variation of the elastic linkage deformation, an experimental platform mainly based on the device of micro aerial vehicles (MAVs) and a new control system mounted on TMS320LF2407 are designed. This control system has its compacted configuration and reliability. Finally, using this system to control the MAV for simulating the flying forward, experimental results show the MAV's flight attitude can he controlled based on the variation of the elastic linkage.
文摘Informationization plays an important role in modern life and production.And various software is one of the bases for it.Before it goes into service,software needs to go through many steps,including software development,design,etc.In software development,test is the key to identify and control bugs and errors in the software.Therefore,software companies often test the software to ensure that it is qualified.In recent years,more attention has been paid to a multi-platform computer software testing method,which can make up for defects in traditional testing methods to improve test accuracy.Firstly,this paper illustrates the connotation and features of software testing.Secondly,common software testing platforms and their requirements are analyzed.Finally,this paper proposes software testing method based on multiple platforms.
基金supported by the National Natural Science Foundation of China(Grant No.52271287).
文摘With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfield development.However,traditional simple wellhead platforms are often discarded after a single use.In pursuit of a more costeffective approach to developing marginal oilfields,this paper proposes a new offshore oil field development facility—an integrated bucket foundation for wellhead platform.To verify the safety of its towing behavior and obtain the dynamic response characteristics of the structure,this paper takes a bucket integrated bucket foundation for wellhead platform with a diameter of 40 m as the research object.By combining physical model tests and numerical simulations,it analyzes the static stability and dynamic response characteristics of the structure during towing,complete with the effects of the draft,wave height,wave period,and towing point height,which produce the dynamic responses of the structure under different influence factors,such as roll angle,pitch angle,heave acceleration and towing force as well as the sensibility to transport variables.The results show that the integrated bucket foundation for wellhead platform is capable of self-floating towing,and its movement is affected by the local environment,which will provide a reference for actual projects.
文摘In order to improve efficiency of the integrated test of a launch vehicle electrical system while meeting the requirement of high-density,a cloud test platform for the electrical system was designed based on a data-driven approach,using secure private cloud technology and virtualization technology.The platform has a general hardware and software architecture,which integrates the functions of graphical editing,automated testing,data processing,fault diagnosis and so on.It can realize multi-task parallel testing.Compared with the traditional test mode,the platform has obvious advantages on testing eficiency and effectiveness.
文摘An inevitable trend has already taken shape for the application of the 5th Generation Mobile Communication Technology(5G)in the railway sector.The application scenarios and business types of the railway sector are complex and diverse,so it is indispensable to test and verify the railway 5G before actual deployment.The design and creation of the railway 5G integrated innovation test platform provides engineering design,test and verification conditions for the networking,coverage and business development of 5G public networks and 5G-R in railway scenarios.This paper introduces the design of the overall architecture for the integrated railway 5G innovation test platform according to the railway network requirements,application scenarios and intelligent development trend;respectively elaborates on the design of the 5G-R core network,bearer network and wireless access along loop tracks,in combination with the characteristics of railway scenarios and the requirements of railway dispatching,operation and safety;raises further solutions on the network deployment and coverage schemes of 5G public networks so as to meet the application requirements of 5G public networks.The study results show that the integrated railway 5G innovation test platform scheme contains co-existence of 5G public and private networks,combines the indoor and outdoor scenarios,as well as takes into account of the dynamic and static tests so as to meet the environmental requirements for the integrated railway 5G test and application of all network functions,for which it can provide comprehensive technical support for railway 5G technology research and development,standard formulation,testing,etc.
文摘Beijing Aerospace System Engineering Institute of China Academy of Launch Vehicle Technology (CALT) declared recently that theinstitute has set up a laboratory whichwould operate a newly
基金support from the National Natural Science Foundation of China (granted number 50979113)the National 863 Program of China (granted number 2006AA09A105)
文摘An S-lay crane barge,named CNOOC 201,has been built for pipe laying in deepwater oil/gas fields in the South China Sea.It is due to be commissioned by the end of the year 2010.A special lifting system is developed to meet the challenge that installing deepwater risers from an S-lay barge is difficult and has not been achieved.The purpose of this paper was to investigate the model test on such an innovative system,which has to be done before field application.By applying the similarity theory,the movement of the S-lay barge is simulated through a six degrees-of-freedom motion platform,and a truncated model riser is utilized for the model testing.The displacement and force boundary conditions at the truncated position of the riser are obtained from the catenary governing equation and become realized by a slideway cart and a loading system designed to control the configuration of the model riser,which presents a similar configuration to a real riser in deepwater.The test results are in very good agreement with theoretical calculations,showing that the active truncated test is applicable for controlling the configuration of the deepwater riser in model testing investigation.
基金This workis financially supported by the Major Fundamental Research Program of ScienceTechnology Commission of Shanghai Municipality(Grant No.05DJ14001)National High Technology Research and Development Programof China(863Program,Grant No.2006AA09A107).
文摘Spar technology has been applied to the deep-sea oil and gas exploitation for several years. From the first generation of classic spar, the spar platform has developed into the second generation of truss spar and the latest cell spar. Owing to its favorable adaptability to wide range of water depth and benign motion performances, spar has aroused quite a lot of interests from oil companies, universities and research institutes. In the present paper, a new cell-truss spar concept, put forward by the State Key Laboratory of Ocean Engineering (SKLOE) at Shanghai Jiao Tong University, is studied both numerically and experimentally. The numerical simulation was conducted by means of nonlinear time-domain fully coupled analysis, and its results were compared to the experimental data. Whereafter, detailed analysis was carried out to obtain the global performances of' the new spar concept. Proposals for the improvement of numerical calculation and experimental technique were tabled meanwhile.
文摘Steel jacket-type platforms are the common kind of the offshore structures and health monitoring is an important issue in their safety assessment. In the present study, a new damage detection method is adopted for this kind of structures and inspected experimentally by use of a laboratory model. The method is investigated for developing the robust damage detection technique which is less sensitive to both measurement and analytical model uncertainties. For this purpose, incorporation of the artificial immune system with weighted attributes (AISWA) method into finite element (FE) model updating is proposed and compared with other methods for exploring its effectiveness in damage identification. Based on mimicking immune recognition, noise simulation and attributes weighting, the method offers important advantages and has high success rates. Therefore, it is proposed as a suitable method for the detection of the failures in the large civil engineering structures with complicated structural geometry, such as the considered case study.
基金financially supported by the National Natural Science Foundation of China(No.51371152)
文摘The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at platform. To optimize the process parameters during investment casting to minimize the warping deformation of the platform, based on simulation with Pro CAST, the single factor method, orthogonal test, neural network and genetic algorithm were subsequently used to analyze the influence of pouring temperature, shell mold preheating temperature, furnace temperature and withdrawal velocity on dimensional accuracy of the platform of superalloyDD6 turbine blade. The accuracy of investment casting simulation was verified by measurement of platform at blade casting. The simulation results with the optimal process parameters illustrate that the equivalent warping deformation was dramatically reduced by 21.8% from 0.232295 mm to 0.181698 mm.
基金supported by the National Basic Research Program of China (2011CB013704)863 project (2008AA092701-5)+1 种基金the National Natural Science Foundation of China (50909088, 51010009, 51379196)the Program for New Century Excellent Talents in University (NCET-10-0762)
文摘Modal strain energy based methods for damage detection have received much attention. However, most of published articles use numerical methods and some studies conduct modal tests with simple 1D or 2D structures to verify the damage detection algorithms. Only a few studies utilize modal testing data from 3D frame structures. Few studies conduct performance comparisons between two different modal strain energy based methods. The objective of this paper is to investigate and compare the effectiveness of a traditional modal strain energy method(Stubbs index) and a recently developed modal strain energy decomposition(MSED) method for damage localization, for such a purpose both simulated and measured data from an offshore platform model being used. Particularly, the mode shapes used in the damage localization are identified and synthesized from only two measurements of one damage scenario because of the limited number of sensors. The two methods were first briefly reviewed. Next, using a 3D offshore platform model, the damage detection algorithms were implemented with different levels of damage severities for both single damage and multiple damage cases. Finally, a physical model of an offshore steel platform was constructed for modal testing and for validating the applicability. Results indicate that the MSED method outperforms the Stubbs index method for structural damage detection.
基金Fund for Astronomical Telescopes and Facility Instrumentsbudgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)+3 种基金supported by the National Natural Science Foundation of China(Grant Nos.11873092,11533009 and 11503084)the Science and Technology Development FundMacao SAR(File No.0002/2019/APD)the One Belt and One Road project of the West Light Foundation,Chinese Academy of Sciences。
文摘The Daocheng site is one of the three candidate sites for the Large Optical/infrared Telescope(LOT)of China.It was discovered by Yunnan Observatories during the survey of potential sites for the next-generation large-aperture solar telescopes of China.This paper describes the overview of the site,the observation platform and the monitor instrument.In addition,simple statistical results are presented(from November,2016 up to December,2017).Detailed data results can refer to the overview of LOT site testing and data analysis articles,which were published during the same period.
基金"863"program-saving and new energy vehicles of major projects funded project(2008AA11A154)
文摘The dynamic system control circuit board(DSCCB)is one of the most important components for dynamic system of pure electric vehicles. The current detection of the DSCCB is done manually, which is not only inefficient in the detection but also difficult to guarantee the data accuracy. In order to improve the detection efficiency and accuracy, a new testing system is designed by Labview. The total test time can be further reduced by about 75% compared with the results of the manual detection. In this paper, the three-parameter sine wave curve-fit algorithm theory is applied to the phase delay detection of the current sensor sampling circuit on the DSCCB. This method solves the problem of big error in the phase delay detection.