In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal proces...In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal processing, a signal with N elements must be sampled at least N times. Thus, most SI methods use N or more sample data to identify a model with N parameters;however, this can be improved by a new sampling theory called compressive sensing (CS). Based on CS, an SI method called compressive measurement identification (CMI) is proposed for reducing the data needed for estimation, by measuring the parameters using a series of linear measurements, rather than the measurements in sequence. In addition, the accuracy of the measurement process is guaranteed by a criterion called the restrict isometric principle. Simulations demonstrate the accuracy and robustness of CMI in an underdetermined case. Further, the dynamic process of a DC motor is identified experimentally, establishing that CMI can shorten the identification process and increase the prediction accuracy.展开更多
The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and n...The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and necessary conditions of controllability and observability for such systems were derived. In terms of Lyapunov’s stability theory, using the theorems of Mittage-Leffler function in two parameters this paper directly derived the sufficient and necessary condition of stability for such systems. The results obtained are useful for the analysis and synthesis of fractional-order linear control systems.展开更多
An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at...An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at the same time. The basic idea is to change the system matrix into a diagonal one through basis transformation. This makes it possible to turn the system’s input-output relationships into the summation of several simple subsystems, and after the identification of these subsystems, the whole identification system is obtained which is algebraically equivalent to the former system. Finally an identification example verifies the effectiveness of the method previously mentioned.展开更多
In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-tim...In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.展开更多
This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constra...This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.展开更多
Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems wit...Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.展开更多
A new concept is presented to express the damping property of linear time-invariant systems, by the Lyapunov theorem in view of quadratic form-defined energy. Two definitions are introduced: damping energy function D(...A new concept is presented to express the damping property of linear time-invariant systems, by the Lyapunov theorem in view of quadratic form-defined energy. Two definitions are introduced: damping energy function D(X_0, X)=Ci∫_(x_0, x) x_idx_(i-1)and comprehensive damping coefficient η-min(Ci/a_(n-i)). It is concluded that (ⅰ) of the Hurwitz determinants, △_(x-1) is proportional to the damping effect of oscillating systems, (ⅱ) the comprehensive damping coefficients of linear time-invariant systems are derived as. piecewise rational fractions which can be easily calculated and (ⅲ) the damping torque coefficient obtained for synchronous machines is independent of ω.展开更多
We investigate the type of singularity and qualitative structure of solutions to a time-invariant linear dynamic system on time scales. The results truly unify the qualitative behaviors of the system on the continuous...We investigate the type of singularity and qualitative structure of solutions to a time-invariant linear dynamic system on time scales. The results truly unify the qualitative behaviors of the system on the continuous and discrete times with any step size.展开更多
This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of ...This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of essential importance in designing formation protocols. Formability of an MAS depends on several key factors: agents' dynamic structures, connectivity topology, properties of the desired formation and the admissible control set. Agents of the MASs considered here are described by a general continuous linear time-invariant (LTI) model. By using the matrix analysis and algebraic graph theory, some necessary and sufficient conditions on formability of LTI-MASs are obtained. These conditions characterize in some sense the relationship of formability, connectivity topology, formation properties and agent dynamics with respect to some typical and widely used admissible protocol sets.展开更多
基金Supported by the National Natural Science Foundation of China(61605218)National Defense Science and Technology Innovation Foundation of Chinese Academy of Sciences(CXJJ-17S023)
文摘In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal processing, a signal with N elements must be sampled at least N times. Thus, most SI methods use N or more sample data to identify a model with N parameters;however, this can be improved by a new sampling theory called compressive sensing (CS). Based on CS, an SI method called compressive measurement identification (CMI) is proposed for reducing the data needed for estimation, by measuring the parameters using a series of linear measurements, rather than the measurements in sequence. In addition, the accuracy of the measurement process is guaranteed by a criterion called the restrict isometric principle. Simulations demonstrate the accuracy and robustness of CMI in an underdetermined case. Further, the dynamic process of a DC motor is identified experimentally, establishing that CMI can shorten the identification process and increase the prediction accuracy.
基金Shanghai Science and Technology Devel-opm ent Funds ( No.0 1160 70 3 3)
文摘The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and necessary conditions of controllability and observability for such systems were derived. In terms of Lyapunov’s stability theory, using the theorems of Mittage-Leffler function in two parameters this paper directly derived the sufficient and necessary condition of stability for such systems. The results obtained are useful for the analysis and synthesis of fractional-order linear control systems.
基金Sponsored by 863 Project (Grant No.2002AA517020) Developing Fund of Shanghai Science Committee (Grant No.011607033).
文摘An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at the same time. The basic idea is to change the system matrix into a diagonal one through basis transformation. This makes it possible to turn the system’s input-output relationships into the summation of several simple subsystems, and after the identification of these subsystems, the whole identification system is obtained which is algebraically equivalent to the former system. Finally an identification example verifies the effectiveness of the method previously mentioned.
文摘In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.
基金Project supported by the National Natural Science Foundation ofChina (No. 60374028) and the Scientific Research Foundation forReturned Overseas Chinese Scholars Ministry of Education (No.[2004]176)
文摘This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.
文摘Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61573332,61601431)Fundamental Research Funds for the Central Universities(WK2100100028)
文摘A new concept is presented to express the damping property of linear time-invariant systems, by the Lyapunov theorem in view of quadratic form-defined energy. Two definitions are introduced: damping energy function D(X_0, X)=Ci∫_(x_0, x) x_idx_(i-1)and comprehensive damping coefficient η-min(Ci/a_(n-i)). It is concluded that (ⅰ) of the Hurwitz determinants, △_(x-1) is proportional to the damping effect of oscillating systems, (ⅱ) the comprehensive damping coefficients of linear time-invariant systems are derived as. piecewise rational fractions which can be easily calculated and (ⅲ) the damping torque coefficient obtained for synchronous machines is independent of ω.
文摘We investigate the type of singularity and qualitative structure of solutions to a time-invariant linear dynamic system on time scales. The results truly unify the qualitative behaviors of the system on the continuous and discrete times with any step size.
基金supported by the National Nature Science Foundation of China under Grants Nos.60934006 and 61104136the Shandong Provincial Natural Science Foundation under Grant No.ZR2010FQ002+1 种基金the School Foundation of Qufu Normal University under Grant No.XJ200913the Scientific Research Foundation of Qufu Normal University
文摘This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of essential importance in designing formation protocols. Formability of an MAS depends on several key factors: agents' dynamic structures, connectivity topology, properties of the desired formation and the admissible control set. Agents of the MASs considered here are described by a general continuous linear time-invariant (LTI) model. By using the matrix analysis and algebraic graph theory, some necessary and sufficient conditions on formability of LTI-MASs are obtained. These conditions characterize in some sense the relationship of formability, connectivity topology, formation properties and agent dynamics with respect to some typical and widely used admissible protocol sets.