针对综放工作面垮落煤岩识别的技术问题,采集了放煤过程中垮落煤岩冲击液压支架后尾梁的振动信号,并提出了一种基于小波包能量流和LTSA的特征提取方法。该方法首先利用小波包变换把振动信号分解成一系列的时频子空间;为了观察原信号能...针对综放工作面垮落煤岩识别的技术问题,采集了放煤过程中垮落煤岩冲击液压支架后尾梁的振动信号,并提出了一种基于小波包能量流和LTSA的特征提取方法。该方法首先利用小波包变换把振动信号分解成一系列的时频子空间;为了观察原信号能量在各层时频子空间的分布特征,计算了小波包分解每一层各个时频子空间的能量,构成了一个小波包能量矩阵,称为小波包能量流;然后利用局部切空间排列(Local Tangent Space Alignment,LTSA)挖掘小波包能量流的低维流形。为了验证小波包能量流低维流形的有效性,把该特征向量输入BP神经网络来识别垮落煤岩。结果表明:基于小波包能量流和LTSA提取的特征向量可以准确简约地表征垮落煤岩,BP神经网络的识别率达到100%。展开更多
针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号一维时...针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号一维时间序列重构到高维相空间,并估计数据的本征维数;然后利用局部切空间排列算法对数据集进行维数约简,得到初始的低维流形结构特征向量空间的第一行特征,对其进行快速傅里叶变换(FFT),从其频谱中分别提取滚动轴承内环、外环的故障特征频率及它们分别对应的倍频和频谱能量等7个变量作为故障特征向量;最后采用KECA对滚动轴承的故障特征向量进行模式识别,KECA可实现根据熵值大小进行特征分类,具有较强的非线性处理能力,从而实现故障的识别与诊断。采用Case Western Reserve大学提供的轴承实验数据对算法进行了验证,结果表明该方法可有效提取滚动轴承的故障特征,可以对滚动轴承的故障类型精确分类,实现对滚动轴承准确的故障诊断。展开更多
文摘针对综放工作面垮落煤岩识别的技术问题,采集了放煤过程中垮落煤岩冲击液压支架后尾梁的振动信号,并提出了一种基于小波包能量流和LTSA的特征提取方法。该方法首先利用小波包变换把振动信号分解成一系列的时频子空间;为了观察原信号能量在各层时频子空间的分布特征,计算了小波包分解每一层各个时频子空间的能量,构成了一个小波包能量矩阵,称为小波包能量流;然后利用局部切空间排列(Local Tangent Space Alignment,LTSA)挖掘小波包能量流的低维流形。为了验证小波包能量流低维流形的有效性,把该特征向量输入BP神经网络来识别垮落煤岩。结果表明:基于小波包能量流和LTSA提取的特征向量可以准确简约地表征垮落煤岩,BP神经网络的识别率达到100%。
文摘针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号一维时间序列重构到高维相空间,并估计数据的本征维数;然后利用局部切空间排列算法对数据集进行维数约简,得到初始的低维流形结构特征向量空间的第一行特征,对其进行快速傅里叶变换(FFT),从其频谱中分别提取滚动轴承内环、外环的故障特征频率及它们分别对应的倍频和频谱能量等7个变量作为故障特征向量;最后采用KECA对滚动轴承的故障特征向量进行模式识别,KECA可实现根据熵值大小进行特征分类,具有较强的非线性处理能力,从而实现故障的识别与诊断。采用Case Western Reserve大学提供的轴承实验数据对算法进行了验证,结果表明该方法可有效提取滚动轴承的故障特征,可以对滚动轴承的故障类型精确分类,实现对滚动轴承准确的故障诊断。