Panel methods for the calculation of wavemaking resistance result in a linear equation system for the unknown singularities.The coefficient matrix is full but not well conditioned.In this paper an incomplete LU decomp...Panel methods for the calculation of wavemaking resistance result in a linear equation system for the unknown singularities.The coefficient matrix is full but not well conditioned.In this paper an incomplete LU decomposition (ILU) method and a combined multigrid ILU method are used to solve the linear system.Systematic computations using the ILU method have shown that the CPU time can be reduced to 30% to 40% of that using an incomplete Gaussian elimination method. In the proposed multigrid ILU method an averaged restriction and a piecewise constant prolongation are used.The construction of the coefficient matrix at coarse levels is based on geometrical considerations.It turns out that the condition of the relative consistency is fulfilled.Comparison computations have shown that nearly the same results were obtained.However,due to additional CPU time needed for the execution of the matrix vector products in the restriction and the prolongation proceses of the multigrid method,a further reduction of the total CPU time could not be reailized.展开更多
A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient meth...A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient method (MILU-CG), and a high order implicit difference algorithm. The flow around a rotating circular cylinder at Reynolds number R-e = 1000, 200 and the angular to rectilinear speed ratio alpha is an element of (0.5, 3.25) is studied numerically. The long-time full developed features about the variations of the vortex patterns in the wake, and drag, lift forces on the cylinder are given. The calculated streamline contours agreed well with the experimental visualized flow pictures. The existence of critical states and the vortex patterns at the states are given for the first time. The maximum lift to drag force ratio can be obtained nearby the critical states.展开更多
文摘Panel methods for the calculation of wavemaking resistance result in a linear equation system for the unknown singularities.The coefficient matrix is full but not well conditioned.In this paper an incomplete LU decomposition (ILU) method and a combined multigrid ILU method are used to solve the linear system.Systematic computations using the ILU method have shown that the CPU time can be reduced to 30% to 40% of that using an incomplete Gaussian elimination method. In the proposed multigrid ILU method an averaged restriction and a piecewise constant prolongation are used.The construction of the coefficient matrix at coarse levels is based on geometrical considerations.It turns out that the condition of the relative consistency is fulfilled.Comparison computations have shown that nearly the same results were obtained.However,due to additional CPU time needed for the execution of the matrix vector products in the restriction and the prolongation proceses of the multigrid method,a further reduction of the total CPU time could not be reailized.
文摘A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient method (MILU-CG), and a high order implicit difference algorithm. The flow around a rotating circular cylinder at Reynolds number R-e = 1000, 200 and the angular to rectilinear speed ratio alpha is an element of (0.5, 3.25) is studied numerically. The long-time full developed features about the variations of the vortex patterns in the wake, and drag, lift forces on the cylinder are given. The calculated streamline contours agreed well with the experimental visualized flow pictures. The existence of critical states and the vortex patterns at the states are given for the first time. The maximum lift to drag force ratio can be obtained nearby the critical states.