The supply of quality energy is a major concern for distribution network managers. This is the case for the company ASEMI, whose subscribers on the DJEGBE mini-power station network are faced with problems of current ...The supply of quality energy is a major concern for distribution network managers. This is the case for the company ASEMI, whose subscribers on the DJEGBE mini-power station network are faced with problems of current instability, voltage drops, and repetitive outages. This work is part of the search for the stability of the electrical distribution network by focusing on the audit of the DJEGBE mini photovoltaic solar power plant electrical network in the commune of OUESSE (Benin). This aims to highlight malfunctions on the low-voltage network to propose solutions for improving current stability among subscribers. Irregularities were noted, notably the overloading of certain lines of the PV network, implying poor distribution of loads by phase, which is the main cause of voltage drops;repetitive outages linked to overvoltage caused by lightning and overcurrent due to overload;faulty meters, absence of earth connection at subscribers. Peaks in consumption were obtained at night, which shows that consumption is greater in the evening. We examined the existing situation and processed the data collected, then simulated the energy consumption profiles with the network analyzer “LANGLOIS 6830” and “Excel”. The power factor value recorded is an average of 1, and the minimum value is 0.85. The daily output is 131.08 kWh, for a daily demand of 120 kWh and the average daily consumption is 109.92 kWh, or 83.86% of the energy produced per day. These results showed that the dysfunctions are linked to the distribution and the use of produced energy. Finally, we proposed possible solutions for improving the electrical distribution network. Thus, measures without investment and those requiring investment have been proposed.展开更多
This paper analyzes the reliability of low voltage(LV)distribution system of the Sri Lankan power system.Performance of LV distribution systems where mainly domestic consumers depend on the individual components of th...This paper analyzes the reliability of low voltage(LV)distribution system of the Sri Lankan power system.Performance of LV distribution systems where mainly domestic consumers depend on the individual components of the system.Failure rates of elements of the system are calculated based on the historical data of the LV distribution system in a semi-urban area.Load point reliability indices are calculated using the analytical method.Consumer-oriented reliability parameters and energy not served,and its cost are determined.As a method of improvement of reliability,inclusion of fuses to the lateral feeders of the main feeder is proposed.Load point reliability indices,consumer-oriented reliability indices,and energy not served are calculated for the distribution system with fuses in lateral feeders.The results are compared with the reliability indices of the present system and analyzed.展开更多
The paper shows several typical arrangements and functions of LV distribution in various power plants and analyses of electromechanical dynamic behavior with NEPLAN simulator. The paper was created on the basis of res...The paper shows several typical arrangements and functions of LV distribution in various power plants and analyses of electromechanical dynamic behavior with NEPLAN simulator. The paper was created on the basis of research project Permanent Prosperity (2A-1TP1/139)-Safety aspects of advanced nuclear reactors in support of Ministry of Industry and Trade of the Czech Republic.展开更多
A new time-frequency transform, known as short-time Lv transform (STLVT), is proposed by applying the inverse Lv distribution to process consecutive segments of long data sequence. Compared with other time-frequency...A new time-frequency transform, known as short-time Lv transform (STLVT), is proposed by applying the inverse Lv distribution to process consecutive segments of long data sequence. Compared with other time-frequency representations, the STLVT is able to achieve better energy concentration in the time-frequency domain for signals containing multiple linear and/or non-linear frequency modulated components. The merits of the STLVT are demonstrated in terms of the effects of window length and overlap length between adjacent segments on signal energy concentration in the time-frequency domain, and the required computational complexity. An application on the spectrum sensing for cognitive ratio (CR) by using a joint use of the STLVT and Hough transform (HT) is proposed and simulated.展开更多
This paper presents a real-time power flow controller for VSIs (voltage source inverters) interfaced to low voltage microgrids. The proposed controller is modular, flexible, intelligent, inexpensive, portable, adapt...This paper presents a real-time power flow controller for VSIs (voltage source inverters) interfaced to low voltage microgrids. The proposed controller is modular, flexible, intelligent, inexpensive, portable, adaptive and designed to positively contribute in low voltage microgrids in which the lines R/X ratio is greater than the transmission lines. Therefore, the proposed control strategy is developed for operation in distribution lines. The controller strategy is different from the conventional grid-connected inverters which are designed based on transmission line characteristics. This controller, using a Texas Instrument general purpose DSP (digital signal processor), is programmed and tuned using MATLAB/SIMULINK in order to enhance self-healing, reliability and stability of the grid. This general purpose controller makes proper decisions using its local measurements as the primary source of data. The controller has the capability of communicating with the adjacent controllers and sharing the information if/when needed. The power flow output of the inverter is tested for both islanded and grid-connected modes of operation. The inverter positively contributes to active and reactive power supply while operating in grid-connected mode. The proposed control method has been implemented on a Texas Instrument DSC (digital signal controller) chip and tested on a hardware test bench at the Alternative Energy Laboratory at WVU1T (West Virginia University Institute of Technology). The system's experimental results veri~ the validity and efficiency of the proposed controller.展开更多
高间歇性、高波动性分布式电源(distributed generation,DG)的持续大量接入给配电网的无功电压管理带来严峻挑战,对无功优化的时效性提出了更高要求。现有电压无功控制研究普遍基于单一电压等级和三相平衡网络模型假设,但实际中低压配...高间歇性、高波动性分布式电源(distributed generation,DG)的持续大量接入给配电网的无功电压管理带来严峻挑战,对无功优化的时效性提出了更高要求。现有电压无功控制研究普遍基于单一电压等级和三相平衡网络模型假设,但实际中低压配网两侧的DG、负荷通过配电变压器的耦合互动不断加剧。同时,由于换相缺失、线路不对称布置、负荷及DG不均匀接入等因素,配电网不平衡特性日益加剧,沿用单一电压等级和三相平衡网络可致电压无功控制决策结果不合理甚至不可行。为此,提出一种基于线性规划的中低压不平衡配电网电压无功实时优化方法。具体通过中压配网静止无功发生器(static var generator,SVG)和低压配网分布式光伏逆变器的协调控制,在满足电网运行约束和控制设备能力约束的情况下,实现中低压不平衡配电网节点电压偏差的最小化。同时,为满足高间歇性DG接入对电压无功控制实时性的要求,对上述非线性电压无功优化问题进行线性化逼近,并采用CPLEX求解器对相应线性规划问题进行有效求解。最后,基于某澳大利亚真实配网开展24h仿真,验证了所提基于线性规划的中低压不平衡配电网电压无功实时优化的有效性和优越性。展开更多
文摘The supply of quality energy is a major concern for distribution network managers. This is the case for the company ASEMI, whose subscribers on the DJEGBE mini-power station network are faced with problems of current instability, voltage drops, and repetitive outages. This work is part of the search for the stability of the electrical distribution network by focusing on the audit of the DJEGBE mini photovoltaic solar power plant electrical network in the commune of OUESSE (Benin). This aims to highlight malfunctions on the low-voltage network to propose solutions for improving current stability among subscribers. Irregularities were noted, notably the overloading of certain lines of the PV network, implying poor distribution of loads by phase, which is the main cause of voltage drops;repetitive outages linked to overvoltage caused by lightning and overcurrent due to overload;faulty meters, absence of earth connection at subscribers. Peaks in consumption were obtained at night, which shows that consumption is greater in the evening. We examined the existing situation and processed the data collected, then simulated the energy consumption profiles with the network analyzer “LANGLOIS 6830” and “Excel”. The power factor value recorded is an average of 1, and the minimum value is 0.85. The daily output is 131.08 kWh, for a daily demand of 120 kWh and the average daily consumption is 109.92 kWh, or 83.86% of the energy produced per day. These results showed that the dysfunctions are linked to the distribution and the use of produced energy. Finally, we proposed possible solutions for improving the electrical distribution network. Thus, measures without investment and those requiring investment have been proposed.
文摘This paper analyzes the reliability of low voltage(LV)distribution system of the Sri Lankan power system.Performance of LV distribution systems where mainly domestic consumers depend on the individual components of the system.Failure rates of elements of the system are calculated based on the historical data of the LV distribution system in a semi-urban area.Load point reliability indices are calculated using the analytical method.Consumer-oriented reliability parameters and energy not served,and its cost are determined.As a method of improvement of reliability,inclusion of fuses to the lateral feeders of the main feeder is proposed.Load point reliability indices,consumer-oriented reliability indices,and energy not served are calculated for the distribution system with fuses in lateral feeders.The results are compared with the reliability indices of the present system and analyzed.
文摘The paper shows several typical arrangements and functions of LV distribution in various power plants and analyses of electromechanical dynamic behavior with NEPLAN simulator. The paper was created on the basis of research project Permanent Prosperity (2A-1TP1/139)-Safety aspects of advanced nuclear reactors in support of Ministry of Industry and Trade of the Czech Republic.
基金supported by the National Natural Science Foundation of China(61571174)the Zhejiang Provincial Natural Science Foundation of China(LY15F010010)+3 种基金the Open Project of Zhejiang Key Laboratory for Signal Processing(ZJKL 4 SP–OP2013–02)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry[2013]693 and[2015]1098the Fundamental Research Funds for the Central Universities(ZYGX2014J097)the Technology Foundation for Selected Overseas Chinese Scholar
文摘A new time-frequency transform, known as short-time Lv transform (STLVT), is proposed by applying the inverse Lv distribution to process consecutive segments of long data sequence. Compared with other time-frequency representations, the STLVT is able to achieve better energy concentration in the time-frequency domain for signals containing multiple linear and/or non-linear frequency modulated components. The merits of the STLVT are demonstrated in terms of the effects of window length and overlap length between adjacent segments on signal energy concentration in the time-frequency domain, and the required computational complexity. An application on the spectrum sensing for cognitive ratio (CR) by using a joint use of the STLVT and Hough transform (HT) is proposed and simulated.
文摘This paper presents a real-time power flow controller for VSIs (voltage source inverters) interfaced to low voltage microgrids. The proposed controller is modular, flexible, intelligent, inexpensive, portable, adaptive and designed to positively contribute in low voltage microgrids in which the lines R/X ratio is greater than the transmission lines. Therefore, the proposed control strategy is developed for operation in distribution lines. The controller strategy is different from the conventional grid-connected inverters which are designed based on transmission line characteristics. This controller, using a Texas Instrument general purpose DSP (digital signal processor), is programmed and tuned using MATLAB/SIMULINK in order to enhance self-healing, reliability and stability of the grid. This general purpose controller makes proper decisions using its local measurements as the primary source of data. The controller has the capability of communicating with the adjacent controllers and sharing the information if/when needed. The power flow output of the inverter is tested for both islanded and grid-connected modes of operation. The inverter positively contributes to active and reactive power supply while operating in grid-connected mode. The proposed control method has been implemented on a Texas Instrument DSC (digital signal controller) chip and tested on a hardware test bench at the Alternative Energy Laboratory at WVU1T (West Virginia University Institute of Technology). The system's experimental results veri~ the validity and efficiency of the proposed controller.
文摘高间歇性、高波动性分布式电源(distributed generation,DG)的持续大量接入给配电网的无功电压管理带来严峻挑战,对无功优化的时效性提出了更高要求。现有电压无功控制研究普遍基于单一电压等级和三相平衡网络模型假设,但实际中低压配网两侧的DG、负荷通过配电变压器的耦合互动不断加剧。同时,由于换相缺失、线路不对称布置、负荷及DG不均匀接入等因素,配电网不平衡特性日益加剧,沿用单一电压等级和三相平衡网络可致电压无功控制决策结果不合理甚至不可行。为此,提出一种基于线性规划的中低压不平衡配电网电压无功实时优化方法。具体通过中压配网静止无功发生器(static var generator,SVG)和低压配网分布式光伏逆变器的协调控制,在满足电网运行约束和控制设备能力约束的情况下,实现中低压不平衡配电网节点电压偏差的最小化。同时,为满足高间歇性DG接入对电压无功控制实时性的要求,对上述非线性电压无功优化问题进行线性化逼近,并采用CPLEX求解器对相应线性规划问题进行有效求解。最后,基于某澳大利亚真实配网开展24h仿真,验证了所提基于线性规划的中低压不平衡配电网电压无功实时优化的有效性和优越性。