this paper,we introduce the L_(p) Shephard problem on entropy of log-concave functions,a comparison problem:whether ∏_(p)f≤∏_(p)g implies that Ent(f)≥Ent(g),for 1≤p<n,and Ent(f)≤Ent(g),for n<p,where ∏_(p)...this paper,we introduce the L_(p) Shephard problem on entropy of log-concave functions,a comparison problem:whether ∏_(p)f≤∏_(p)g implies that Ent(f)≥Ent(g),for 1≤p<n,and Ent(f)≤Ent(g),for n<p,where ∏_(p)f is the L_(p) projection body of a log-concave function f.Our results give a partial answer to this problem.展开更多
稀疏恢复(Sparse Recovery,SR)空时自适应信号处理(Space Time Adaptive Processing,STAP)仅需要少量的杂波样本即可有效抑制杂波,但是稀疏恢复空时自适应信号处理依赖于空时字典,当载机运动方向与天线放置方向存在偏航角时,杂波脊偏离...稀疏恢复(Sparse Recovery,SR)空时自适应信号处理(Space Time Adaptive Processing,STAP)仅需要少量的杂波样本即可有效抑制杂波,但是稀疏恢复空时自适应信号处理依赖于空时字典,当载机运动方向与天线放置方向存在偏航角时,杂波脊偏离空时字典格点,出现离格问题,从而导致杂波抑制性能下降。已有的基于l_(1)范数类的离格稀疏恢复算法在存在噪声时性能下降,没有充分利用杂波的稀疏性,文章提出一种基于l_(p)(0<p<1)范数的离格空时自适应处理算法,首先将建立基于空时字典更新的稀疏恢复空时自适应模型,然后将该模型松弛为l_(p)(0<p<1)范数的非凸优化问题,最后利用主函数最大化算法将该优化问题转化成凸优化问题,利用两层迭代求解的方法得到该问题的解,最后利用模型的解估计杂波协方差矩阵。通过仿真实验表明,提出的算法能够提高存在离格问题时的杂波恢复精度,抑制杂波的性能也优于已有的基于变分推断的算法。展开更多
为解决传统数字滤波器在有限精度实现时因有限字长(Finite Word Length,FWL)效应导致滤波器性能下降的问题,提出一种L_(2)灵敏度最小化的数字滤波器状态空间实现稀疏化方法.推导前向差分算子数字滤波器结构传输函数及其等效状态空间实现...为解决传统数字滤波器在有限精度实现时因有限字长(Finite Word Length,FWL)效应导致滤波器性能下降的问题,提出一种L_(2)灵敏度最小化的数字滤波器状态空间实现稀疏化方法.推导前向差分算子数字滤波器结构传输函数及其等效状态空间实现,根据可控及可观格莱姆矩阵得到基于相似变换矩阵的L_(2)灵敏度表达式,并进行稀疏化校准,将L_(2)灵敏度最小化问题转换为凸函数求最值问题,求导得到L_(2)灵敏度最小化表达式,代回即得前向差分算子数字滤波器的稀疏化状态空间实现.仿真结果表明,所提方法设计的数字滤波器具有更好的抗FWL效应.展开更多
In this paper,we prove the uniqueness of the Lp Minkowski problem for q-torsional rigidity with p>1 and q>1 in smooth case.Meanwhile,the Lp Brunn-Minkowski inequality and the Lp Hadamard variational formula for ...In this paper,we prove the uniqueness of the Lp Minkowski problem for q-torsional rigidity with p>1 and q>1 in smooth case.Meanwhile,the Lp Brunn-Minkowski inequality and the Lp Hadamard variational formula for q-torsional rigidity are established.展开更多
For 1<p<∞,let S(Lp)+be the set of positive elements in L_(p) with norm one.Assume that V_(0):S(L_(p)(Ω_(1)))+→S(L_(p)(Ω_(2)))+is a surjective norm-additive map;that is,‖V_(0)(x)+V_(0)(y)‖=‖x+y‖,■x,y∈S(...For 1<p<∞,let S(Lp)+be the set of positive elements in L_(p) with norm one.Assume that V_(0):S(L_(p)(Ω_(1)))+→S(L_(p)(Ω_(2)))+is a surjective norm-additive map;that is,‖V_(0)(x)+V_(0)(y)‖=‖x+y‖,■x,y∈S(L_(p)(Ω_(1)))+.In this paper,we show that V_(0) can be extended to an isometry from L_(p)(Ω_(1))onto L_(p)(Ω_(2)).展开更多
Let M be a semifinite von Neumann algebra.We equip the associated noncommutative Lp-spaces with their natural operator space structure introduced by Pisier via complex interpolation.On the other hand,for L_(p),p(M)=(...Let M be a semifinite von Neumann algebra.We equip the associated noncommutative Lp-spaces with their natural operator space structure introduced by Pisier via complex interpolation.On the other hand,for L_(p),p(M)=(L_(∞)(M),L_(1)(M)_(1/p,p)be equipped with the operator space structure via real interpolation as defined by the second named author(J.Funct.Anal.139(1996),500–539).We show that Lp,p(M)=Lp(M)completely isomorphically if and only if M is finite dimensional.This solves in the negative the three problems left open in the quoted work of the second author.We also show that for 1<p<∞and 1≤q≤∞with p 6=q,(L_(∞)(M;l_(q)),L_(1)(M;l_(q)_(1/p,p)=L_(p)(M;l_(q)with equivalent norms,i.e.,at the Banach space level if and only if M is isomorphic,as a Banach space,to a commutative von Neumann algebra.Our third result concerns the following inequality:||(∑iixtq)^(1/q)||lp(M)≤||(∑iixit)^(1/q)||lp(M),for any finite sequence(xi)⊂L+p(M),where 0<r<q<∞and 0<p≤∞.If M is not isomorphic,as a Banach space,to a commutative von Meumann algebra,then this inequality holds if and only if p≥r.展开更多
基金The National Natural Science Foundation of China(11701373)The Shanghai Sailing Program(17YF1413800)。
文摘this paper,we introduce the L_(p) Shephard problem on entropy of log-concave functions,a comparison problem:whether ∏_(p)f≤∏_(p)g implies that Ent(f)≥Ent(g),for 1≤p<n,and Ent(f)≤Ent(g),for n<p,where ∏_(p)f is the L_(p) projection body of a log-concave function f.Our results give a partial answer to this problem.
文摘稀疏恢复(Sparse Recovery,SR)空时自适应信号处理(Space Time Adaptive Processing,STAP)仅需要少量的杂波样本即可有效抑制杂波,但是稀疏恢复空时自适应信号处理依赖于空时字典,当载机运动方向与天线放置方向存在偏航角时,杂波脊偏离空时字典格点,出现离格问题,从而导致杂波抑制性能下降。已有的基于l_(1)范数类的离格稀疏恢复算法在存在噪声时性能下降,没有充分利用杂波的稀疏性,文章提出一种基于l_(p)(0<p<1)范数的离格空时自适应处理算法,首先将建立基于空时字典更新的稀疏恢复空时自适应模型,然后将该模型松弛为l_(p)(0<p<1)范数的非凸优化问题,最后利用主函数最大化算法将该优化问题转化成凸优化问题,利用两层迭代求解的方法得到该问题的解,最后利用模型的解估计杂波协方差矩阵。通过仿真实验表明,提出的算法能够提高存在离格问题时的杂波恢复精度,抑制杂波的性能也优于已有的基于变分推断的算法。
文摘为解决传统数字滤波器在有限精度实现时因有限字长(Finite Word Length,FWL)效应导致滤波器性能下降的问题,提出一种L_(2)灵敏度最小化的数字滤波器状态空间实现稀疏化方法.推导前向差分算子数字滤波器结构传输函数及其等效状态空间实现,根据可控及可观格莱姆矩阵得到基于相似变换矩阵的L_(2)灵敏度表达式,并进行稀疏化校准,将L_(2)灵敏度最小化问题转换为凸函数求最值问题,求导得到L_(2)灵敏度最小化表达式,代回即得前向差分算子数字滤波器的稀疏化状态空间实现.仿真结果表明,所提方法设计的数字滤波器具有更好的抗FWL效应.
基金The authors were supported by NSFC(11771132)Hunan Science and Technology Project(2018JJ1004).
文摘In this paper,we prove the uniqueness of the Lp Minkowski problem for q-torsional rigidity with p>1 and q>1 in smooth case.Meanwhile,the Lp Brunn-Minkowski inequality and the Lp Hadamard variational formula for q-torsional rigidity are established.
基金partially supported by the NSF of China(11671314)partially supported by the NSF of China(12171251)。
文摘For 1<p<∞,let S(Lp)+be the set of positive elements in L_(p) with norm one.Assume that V_(0):S(L_(p)(Ω_(1)))+→S(L_(p)(Ω_(2)))+is a surjective norm-additive map;that is,‖V_(0)(x)+V_(0)(y)‖=‖x+y‖,■x,y∈S(L_(p)(Ω_(1)))+.In this paper,we show that V_(0) can be extended to an isometry from L_(p)(Ω_(1))onto L_(p)(Ω_(2)).
基金the French ANR project(ANR-19-CE40-0002)the Natural Science Foundation of China(12031004).
文摘Let M be a semifinite von Neumann algebra.We equip the associated noncommutative Lp-spaces with their natural operator space structure introduced by Pisier via complex interpolation.On the other hand,for L_(p),p(M)=(L_(∞)(M),L_(1)(M)_(1/p,p)be equipped with the operator space structure via real interpolation as defined by the second named author(J.Funct.Anal.139(1996),500–539).We show that Lp,p(M)=Lp(M)completely isomorphically if and only if M is finite dimensional.This solves in the negative the three problems left open in the quoted work of the second author.We also show that for 1<p<∞and 1≤q≤∞with p 6=q,(L_(∞)(M;l_(q)),L_(1)(M;l_(q)_(1/p,p)=L_(p)(M;l_(q)with equivalent norms,i.e.,at the Banach space level if and only if M is isomorphic,as a Banach space,to a commutative von Neumann algebra.Our third result concerns the following inequality:||(∑iixtq)^(1/q)||lp(M)≤||(∑iixit)^(1/q)||lp(M),for any finite sequence(xi)⊂L+p(M),where 0<r<q<∞and 0<p≤∞.If M is not isomorphic,as a Banach space,to a commutative von Meumann algebra,then this inequality holds if and only if p≥r.
基金Supported by the National Natural Science Foundation of China(11871452,12071052the Natural Science Foundation of Henan(202300410338)the Nanhu Scholar Program for Young Scholars of XYNU。