期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Bearings Intelligent Fault Diagnosis by 1-D Adder Neural Networks
1
作者 Jian Tang Chao Wei +3 位作者 Quanchang Li Yinjun Wang Xiaoxi Ding Wenbin Huang 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第3期160-168,共9页
Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during ... Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources. 展开更多
关键词 adder neural network convolutional neural network fault diagnosis intelligent bearings l1-norm distance
下载PDF
l_(1)-norm Based GWLP for Robust Frequency Estimation
2
作者 Yuan Chen Liangtao Duan +1 位作者 Weize Sun Jingxin Xu 《Journal on Big Data》 2019年第3期107-116,共10页
In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency est... In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency estimator is developed.Since the proposed method employs the weighted l_(1)-norm on the LP errors,it can be regarded as an extension of the l_(1)-generalized weighted linear predictor.Computer simulations are conducted in the environment of α-stable noise,indicating the superiority of the proposed algorithm,in terms of its robust to outliers and nearly optimal estimation performance. 展开更多
关键词 Robust frequency estimation linear prediction impulsive noise weighted l_(1)-norm minimization
下载PDF
稀疏信号重构的罚函数神经网络模型 被引量:1
3
作者 蔡园园 李国成 《计算机应用》 CSCD 北大核心 2021年第S02期13-18,共6页
在压缩感知理论中,针对未知信号的稀疏性和信号非零元素位置的不确定性使得稀疏信号的重构比较困难,以及基于贪婪迭代方法的匹配追踪算法和基于凸松弛方法的基追踪算法对稀疏信号的重构概率不高的问题,提出一个罚函数神经网络模型。首... 在压缩感知理论中,针对未知信号的稀疏性和信号非零元素位置的不确定性使得稀疏信号的重构比较困难,以及基于贪婪迭代方法的匹配追踪算法和基于凸松弛方法的基追踪算法对稀疏信号的重构概率不高的问题,提出一个罚函数神经网络模型。首先在感知矩阵满足有限等距性(RIP)的前提下,压缩感知问题可以转化为等价的l_(1)-范数最小化问题。然后基于罚函数的思想构造能量函数,建立了解决稀疏信号重构的神经网络模型,并对其收敛性和优化能力进行了理论分析。仿真实验结果表明,仅需较少的观测数,稀疏信号的重构概率就能接近100%;特别是在不同的观测数下,所提出的神经网络模型与正交匹配追踪(OMP)算法、压缩采样匹配追踪(CoSaMP)算法及l_(1)-正则化最小二乘法(l_(1)-LS)相比,信号的重构概率分别平均提高了4.93个百分点、14.07个百分点和2.73个百分点。 展开更多
关键词 压缩感知 l_(1)-最优化 有限等距性 神经网络 能量函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部