Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI)and the China Multi-Model Ensemble(CMME)El Niño-Southern Oscillation(ENSO)Outlook issued ...Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI)and the China Multi-Model Ensemble(CMME)El Niño-Southern Oscillation(ENSO)Outlook issued in April 2022,La Niña is favored to continue through the boreal summer and fall,indicating a high possibility of a three-year La Niña(2020-23).It would be the first three-year La Niña since the 1998-2001 event,which is the only observed three-year La Niña event since 1980.By examining the status of air-sea fields over the tropical Pacific in March 2022,it can be seen that while the thermocline depths were near average,the southeasterly wind stress was at its strongest since 1980.Here,based on a quaternary linear regression model that includes various relevant air-sea variables over the equatorial Pacific in March,we argue that the historic southeasterly winds over the equatorial Pacific are favorable for the emergence of the third-year La Niña,and both the anomalous easterly and southerly wind stress components are important and contribute~50%of the third-year La Niña growth,respectively.Additionally,the possible global climate impacts of this event are discussed.展开更多
To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 201...To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 2019-20 Australian wildfire season could have triggered this multi-year La Niña.Here,we present compelling evidence from paleo-proxies,utilizing a substantial sample size of 26 volcanic eruptions in the Southern Hemisphere(SH),to support the hypothesis that ocean cooling in the SH can lead to a multi-year La Niña event.This research highlights the importance of focusing on the Southern Ocean,as current climate models struggle to accurately simulate the Pacific response driven by the Southern Ocean.展开更多
Isopycnal analyses were performed on the Global Ocean Data Assimilation System (GODAS) to determine the oceanic processes leading to so-called second-year cooling of the La Nina event.In 2010-12,a horseshoe-like pat...Isopycnal analyses were performed on the Global Ocean Data Assimilation System (GODAS) to determine the oceanic processes leading to so-called second-year cooling of the La Nina event.In 2010-12,a horseshoe-like pattern was seen,connecting negative temperature anomalies off and on the Equator,with a dominant influence from the South Pacific.During the 2010 La Nina event,warm waters piled up at subsurface depths in the western tropical Pacific.Beginning in early 2011,these warm subsurface anomalies propagated along the Equator toward the eastern basin,acting to reverse the sign of sea surface temperature (SST) anomalies (SSTAs) there and initiate a warm SSTA.However,throughout early 2011,pronounced negative anomalies persisted off the Equator in the subsurface depths of the South Pacific.As isopycnal surfaces outcropped in the central equatorial Pacific,negative anomalies from the subsurface spread upward along with mean circulation pathways,naturally initializing a cold SSTA.In the summer,a cold SSTA reappeared in the central basin,which subsequently strengthened due to the off-equatorial effects mostly in the South Pacific.These SSTAs acted to initiate local coupled air-sea interactions,generating atmospheric-oceanic anomalies that developed and evolved with the second-year cooling in the fall of 2011.However,the cooling tendency in mid-2012 did not develop into another La Nina event,since the cold anomalies in the South Pacific were not strong enough.An analysis of the 2007-09 La Nina event revealed similar processes to the 2010-12 La Nina event.展开更多
Several consecutive extreme cold events impacted China during the first half of winter 2020/21,breaking the low-temperature records in many cities.How to make accurate climate predictions of extreme cold events is sti...Several consecutive extreme cold events impacted China during the first half of winter 2020/21,breaking the low-temperature records in many cities.How to make accurate climate predictions of extreme cold events is still an urgent issue.The synergistic effect of the warm Arctic and cold tropical Pacific has been demonstrated to intensify the intrusions of cold air from polar regions into middle-high latitudes,further influencing the cold conditions in China.However,climate models failed to predict these two ocean environments at expected lead times.Most seasonal climate forecasts only predicted the 2020/21 La Niña after the signal had already become apparent and significantly underestimated the observed Arctic sea ice loss in autumn 2020 with a 1-2 month advancement.In this work,the corresponding physical factors that may help improve the accuracy of seasonal climate predictions are further explored.For the 2020/21 La Niña prediction,through sensitivity experiments involving different atmospheric-oceanic initial conditions,the predominant southeasterly wind anomalies over the equatorial Pacific in spring of 2020 are diagnosed to play an irreplaceable role in triggering this cold event.A reasonable inclusion of atmospheric surface winds into the initialization will help the model predict La Niña development from the early spring of 2020.For predicting the Arctic sea ice loss in autumn 2020,an anomalously cyclonic circulation from the central Arctic Ocean predicted by the model,which swept abnormally hot air over Siberia into the Arctic Ocean,is recognized as an important contributor to successfully predicting the minimum Arctic sea ice extent.展开更多
El Nio-Southern Oscillation(ENSO)is an abnormal sea surface warming or cooling phenomenon over the tropical Pacific,which also has severe global impact.
Statistic and typical-year composition methods are used to study the northwest Pacific typhoon activities in relation with the El Nino and La Nifia events. The result indicates that the typhoon tends to be inactive in...Statistic and typical-year composition methods are used to study the northwest Pacific typhoon activities in relation with the El Nino and La Nifia events. The result indicates that the typhoon tends to be inactive in the El Nifio years and active in the La Nina years and it is also dependent on the onset and ending time and intensity of the events and areas of genesis of typhoons. With statistic features of the frequency of typhoon activity in the El Nifio and La Nina years and the time-lag correlation between the frequency and sea surface temperature (SST). useful information is provided for the prediction of typhoon occurrence. In addition, the singular values disassemble (SVD) method is applied to study the correlation between the geopotential field and SST field. The result shows that the air-sea coupling in the El Nino years is unfavorable for the typhoon to develop, which take place with a smaller number. Opposite situations are found with the La Nina years.展开更多
Five volcanic rock samples and two granite samples taken from the volcanic basins in western Fujian and southern Jiangxi were dated by using the zircon laser albation-inductively coupled plasma mass spectrometry U-Pb ...Five volcanic rock samples and two granite samples taken from the volcanic basins in western Fujian and southern Jiangxi were dated by using the zircon laser albation-inductively coupled plasma mass spectrometry U-Pb method. Together with previously dated ages, the dates obtained provide important constraints on the timing of late Mesozoic tectonic events in SE China. The volcanic rock samples yield ages of 183.1±3.5 Ma, ca. 141 Ma to 135.8±1.1 Ma, 100.4±1.5 to 97.6±1.1 Ma, confirming three episodes of late Mesozoic volcanic activities, which peaked at 180±5 Ma, 140±5 Ma and 100±5 Ma, respectively, along the Wuyishan belt. Moreover, based on field investigations of these volcano-sedimentary basins, we have recognized two compressional tectonic events along this belt. The early one was characterized by Upper Triassic to Middle Jurassic NNE-trending folds that were intruded by late Jurassic granites; and the late one caused the Lower Cretaceous volcano-sedimentary layer to be tilted. The dated age 152.9±1.4 Ma of the granitic samples from the Hetian granitic pluton in the Changting Basin and that from the Baishiding granitic pluton, 100.2±1.8 Ma, in the Jianning Basin, give the upper boundaries of these two tectonic events respectively. Hence, the late Mesozoic tectonic evolution of SE China was alternated between extension and compression.展开更多
Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt ...Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt is mainly composed of the Liaoji granites and metamorphic volcanic-sedimentary rocks of the Liaohe group(and its展开更多
The 2015/2016 El Nino event reached the threshold of super El Nino event,and was comparable to the super events in 1982/1983 and 1997/1998.Interestingly,the tropical cyclones(TCs)were found to have very late onsets in...The 2015/2016 El Nino event reached the threshold of super El Nino event,and was comparable to the super events in 1982/1983 and 1997/1998.Interestingly,the tropical cyclones(TCs)were found to have very late onsets in the decaying years of the super El Nino events.This study discusses the causes of late TC onsets related with atmospheric circulation,disturbance sources and trigger mechanisms.The analysis shows that the western North Pacific subtropical high(WNPSH)from January–June during the decaying years of the super El Nino events were stronger than the climatic mean,which resulted in a relatively stable atmospheric state by inhibiting deep convection.As a disturbance source,the April–June intertropical convergence zone(ITCZ)during the decaying years of the super El Nino events were significantly weaker than its climatic mean.The cross-equatorial flow and monsoon trough,as important TC generation triggers,were weaker from April–June during the decaying years of the super El Nino events,which further reduced the probability of TC generation.As for the late TC onsets,the role of atmospheric circulation anomalies(i.e.,subtropical-high,the ITCZ,cross-equatorial flow,and monsoon trough)were more important.The cross-equatorial flow may take as predictor of TC onsets in the decaying years of the super El Nino events.展开更多
基金supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (CASGrant No. ZDBS-LY-DQC010)+3 种基金the National Natural Science Foundation of China (Grant Nos. 4187601242175045)the Strategic Priority Research Program of CAS (Grant No. XDB42000000)Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030004)
文摘Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI)and the China Multi-Model Ensemble(CMME)El Niño-Southern Oscillation(ENSO)Outlook issued in April 2022,La Niña is favored to continue through the boreal summer and fall,indicating a high possibility of a three-year La Niña(2020-23).It would be the first three-year La Niña since the 1998-2001 event,which is the only observed three-year La Niña event since 1980.By examining the status of air-sea fields over the tropical Pacific in March 2022,it can be seen that while the thermocline depths were near average,the southeasterly wind stress was at its strongest since 1980.Here,based on a quaternary linear regression model that includes various relevant air-sea variables over the equatorial Pacific in March,we argue that the historic southeasterly winds over the equatorial Pacific are favorable for the emergence of the third-year La Niña,and both the anomalous easterly and southerly wind stress components are important and contribute~50%of the third-year La Niña growth,respectively.Additionally,the possible global climate impacts of this event are discussed.
基金the National Key Research and Development Program of China(Grant No.2020YFA0608803)the National Natural Science Foundation of China(Grant Nos.41975107,41875092 and 42005020).
文摘To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 2019-20 Australian wildfire season could have triggered this multi-year La Niña.Here,we present compelling evidence from paleo-proxies,utilizing a substantial sample size of 26 volcanic eruptions in the Southern Hemisphere(SH),to support the hypothesis that ocean cooling in the SH can lead to a multi-year La Niña event.This research highlights the importance of focusing on the Southern Ocean,as current climate models struggle to accurately simulate the Pacific response driven by the Southern Ocean.
基金supported by National Natural Science Foundation of China (Grant No. 40906014)the Ocean Public Welfare Scientific Research Project (Grant No. 201205018-2)+4 种基金the National Key Basic Research Program of China (Grant No. 2010CB950302)the China Scholarship Council (CSC)supported partly by the National Science Foundation (NSF) (Grant No. ATM0727668)NASA (Grant No. NNX08AI74G)the National Oceanic and Atmospheric Administration (NOAA) (Grant No. NA08OAR4310885)
文摘Isopycnal analyses were performed on the Global Ocean Data Assimilation System (GODAS) to determine the oceanic processes leading to so-called second-year cooling of the La Nina event.In 2010-12,a horseshoe-like pattern was seen,connecting negative temperature anomalies off and on the Equator,with a dominant influence from the South Pacific.During the 2010 La Nina event,warm waters piled up at subsurface depths in the western tropical Pacific.Beginning in early 2011,these warm subsurface anomalies propagated along the Equator toward the eastern basin,acting to reverse the sign of sea surface temperature (SST) anomalies (SSTAs) there and initiate a warm SSTA.However,throughout early 2011,pronounced negative anomalies persisted off the Equator in the subsurface depths of the South Pacific.As isopycnal surfaces outcropped in the central equatorial Pacific,negative anomalies from the subsurface spread upward along with mean circulation pathways,naturally initializing a cold SSTA.In the summer,a cold SSTA reappeared in the central basin,which subsequently strengthened due to the off-equatorial effects mostly in the South Pacific.These SSTAs acted to initiate local coupled air-sea interactions,generating atmospheric-oceanic anomalies that developed and evolved with the second-year cooling in the fall of 2011.However,the cooling tendency in mid-2012 did not develop into another La Nina event,since the cold anomalies in the South Pacific were not strong enough.An analysis of the 2007-09 La Nina event revealed similar processes to the 2010-12 La Nina event.
基金supported by the Key Research Program of Frontier Sciences,CAS (Grant No. ZDBS-LY-DQC010)the National Natural Science Foundation of China (Grant Nos. 41876012 and 41861144015,42175045)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB42000000).
文摘Several consecutive extreme cold events impacted China during the first half of winter 2020/21,breaking the low-temperature records in many cities.How to make accurate climate predictions of extreme cold events is still an urgent issue.The synergistic effect of the warm Arctic and cold tropical Pacific has been demonstrated to intensify the intrusions of cold air from polar regions into middle-high latitudes,further influencing the cold conditions in China.However,climate models failed to predict these two ocean environments at expected lead times.Most seasonal climate forecasts only predicted the 2020/21 La Niña after the signal had already become apparent and significantly underestimated the observed Arctic sea ice loss in autumn 2020 with a 1-2 month advancement.In this work,the corresponding physical factors that may help improve the accuracy of seasonal climate predictions are further explored.For the 2020/21 La Niña prediction,through sensitivity experiments involving different atmospheric-oceanic initial conditions,the predominant southeasterly wind anomalies over the equatorial Pacific in spring of 2020 are diagnosed to play an irreplaceable role in triggering this cold event.A reasonable inclusion of atmospheric surface winds into the initialization will help the model predict La Niña development from the early spring of 2020.For predicting the Arctic sea ice loss in autumn 2020,an anomalously cyclonic circulation from the central Arctic Ocean predicted by the model,which swept abnormally hot air over Siberia into the Arctic Ocean,is recognized as an important contributor to successfully predicting the minimum Arctic sea ice extent.
基金supported by the Basic Science Research Program of the National Research Foundation of Korea (Grant No.NRF-2017K1A3A7A03087790)
文摘El Nio-Southern Oscillation(ENSO)is an abnormal sea surface warming or cooling phenomenon over the tropical Pacific,which also has severe global impact.
文摘Statistic and typical-year composition methods are used to study the northwest Pacific typhoon activities in relation with the El Nino and La Nifia events. The result indicates that the typhoon tends to be inactive in the El Nifio years and active in the La Nina years and it is also dependent on the onset and ending time and intensity of the events and areas of genesis of typhoons. With statistic features of the frequency of typhoon activity in the El Nifio and La Nina years and the time-lag correlation between the frequency and sea surface temperature (SST). useful information is provided for the prediction of typhoon occurrence. In addition, the singular values disassemble (SVD) method is applied to study the correlation between the geopotential field and SST field. The result shows that the air-sea coupling in the El Nino years is unfavorable for the typhoon to develop, which take place with a smaller number. Opposite situations are found with the La Nina years.
基金funded by the National Natural Science Foundation of China(grant No. 40634022)
文摘Five volcanic rock samples and two granite samples taken from the volcanic basins in western Fujian and southern Jiangxi were dated by using the zircon laser albation-inductively coupled plasma mass spectrometry U-Pb method. Together with previously dated ages, the dates obtained provide important constraints on the timing of late Mesozoic tectonic events in SE China. The volcanic rock samples yield ages of 183.1±3.5 Ma, ca. 141 Ma to 135.8±1.1 Ma, 100.4±1.5 to 97.6±1.1 Ma, confirming three episodes of late Mesozoic volcanic activities, which peaked at 180±5 Ma, 140±5 Ma and 100±5 Ma, respectively, along the Wuyishan belt. Moreover, based on field investigations of these volcano-sedimentary basins, we have recognized two compressional tectonic events along this belt. The early one was characterized by Upper Triassic to Middle Jurassic NNE-trending folds that were intruded by late Jurassic granites; and the late one caused the Lower Cretaceous volcano-sedimentary layer to be tilted. The dated age 152.9±1.4 Ma of the granitic samples from the Hetian granitic pluton in the Changting Basin and that from the Baishiding granitic pluton, 100.2±1.8 Ma, in the Jianning Basin, give the upper boundaries of these two tectonic events respectively. Hence, the late Mesozoic tectonic evolution of SE China was alternated between extension and compression.
基金supported by the National Science Foundation of China (grant No. 41272223)China Geological Survey (grants No. DD20160049, 1212011220247 and 12120110300015)
文摘Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt is mainly composed of the Liaoji granites and metamorphic volcanic-sedimentary rocks of the Liaohe group(and its
基金The National Key Research and Development Program for Developing Basic Sciences under contract No.2016YFC1401601the National Natural Science Foundation of China under contract No.41576026
文摘The 2015/2016 El Nino event reached the threshold of super El Nino event,and was comparable to the super events in 1982/1983 and 1997/1998.Interestingly,the tropical cyclones(TCs)were found to have very late onsets in the decaying years of the super El Nino events.This study discusses the causes of late TC onsets related with atmospheric circulation,disturbance sources and trigger mechanisms.The analysis shows that the western North Pacific subtropical high(WNPSH)from January–June during the decaying years of the super El Nino events were stronger than the climatic mean,which resulted in a relatively stable atmospheric state by inhibiting deep convection.As a disturbance source,the April–June intertropical convergence zone(ITCZ)during the decaying years of the super El Nino events were significantly weaker than its climatic mean.The cross-equatorial flow and monsoon trough,as important TC generation triggers,were weaker from April–June during the decaying years of the super El Nino events,which further reduced the probability of TC generation.As for the late TC onsets,the role of atmospheric circulation anomalies(i.e.,subtropical-high,the ITCZ,cross-equatorial flow,and monsoon trough)were more important.The cross-equatorial flow may take as predictor of TC onsets in the decaying years of the super El Nino events.