期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synergetic migration behavior of La and Ce and related microstructure character of Cr-V-RE co-doped WC-Co alloy 被引量:4
1
作者 张立 唐炜 +2 位作者 陈述 南晴 解明伟 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第5期480-485,共6页
The as-sintered sinter skin and the polished section of WC-11Co-0.4Cr 3 C 2-0.3VC-0.2RE(RE=mischmetal with La/Ce ratio of 0.65) alloy were analyzed.It was shown that the microstructures on the skin and in the inner ... The as-sintered sinter skin and the polished section of WC-11Co-0.4Cr 3 C 2-0.3VC-0.2RE(RE=mischmetal with La/Ce ratio of 0.65) alloy were analyzed.It was shown that the microstructures on the skin and in the inner part of the alloy were all characterized with a WC+β+M structure,where β was a cobalt-based binder phase and M represented a RE-containing phase.There existed an inward diffusion of S atoms,which caught and fixed the Ce atoms in the alloy and an outward diffusion of La atoms during the sintering process.Consequently,the M phase was characterized with the decreased La/Ce ratio(0.59) in the inner part and the increased La/Ce ratio(1.01) on the skin.The M phase on the skin was characterized with a γ-Ce 2 S 3 type structure.To suppress the long range migration of rare earth to the skin,S in the sintering atmosphere had to be eliminated. 展开更多
关键词 cemented carbide sintering rare earth diffusion la and ce synergetic migration Ln 2 S 3 dispersed phase sulfur
原文传递
A comparison study of Ce/La and Ca microalloying on the bio-corrosion behaviors of extruded Mg-Zn alloys 被引量:8
2
作者 J.H.Chu L.B.Tong +4 位作者 Z.H.Jiang D.N.Zou Q.J.Wang S.F.Liu H.J.Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期1269-1280,共12页
The influences of Ca and Ce/La microalloying on the microstructure evolution and bio-corrosion resistances of extruded Mg-Zn alloys have been systematically investigated in the current study.Compared with single Ca or... The influences of Ca and Ce/La microalloying on the microstructure evolution and bio-corrosion resistances of extruded Mg-Zn alloys have been systematically investigated in the current study.Compared with single Ca or Ce/La addition,the Ca-Ce/La cooperative microalloying results in an outstanding grain refinement,because the fine secondary phase particles effectively hinder the recrystallized grain growth.The coarse Ca2Mg6Zn3 phases promote the formation of Ca3(PO4)2 or hydroxyapatite particles during the immersion process and accelerate the dissolution of the corrosion product film,which destroys its integrity and results in the deterioration of anti-corrosive performance.The Ce/La elements can be dispersed within the conventional Mg7Zn3 phases,which reduce the internal galvanic corrosion between Mg matrix and the secondary phases,leading to an obvious improvement of corrosion resistance.Therefore,the Ca-Ce/La cooperative microalloying achieves a homogenous fine-grained microstructure and improves the protective ability of surface film,which will pave a new avenue for the design of biomedical Mg alloys in the coming future. 展开更多
关键词 Extruded Mg-Zn alloy Ca and ce/la microalloying Microstructure evolution Bio-corrosion behaviors
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部