A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts c...A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.展开更多
A series of Pt catalysts supported on the Hβ-zeolite that is ion-exchanged with the rare earth metal ions of Ce(III) and La(III),are prepared by impregnation,characterized by inductively coupled plasma (ICP),X-...A series of Pt catalysts supported on the Hβ-zeolite that is ion-exchanged with the rare earth metal ions of Ce(III) and La(III),are prepared by impregnation,characterized by inductively coupled plasma (ICP),X-ray diffraction (XRD),BET,temperature-programmed desorption of ammonia (NH3-TPD),temperature-programmed reduction of hydrogen (H2-TPR) and H2-chemisorption techniques,and evaluated in the hydroisomerization of n-heptane with an atmospheric fixed-bed reactor.The reaction temperature,time on stream,space velocity,and the ratio of H2/n-heptane are changed to get the optimal conditions.The Ce(III) and La(III)-exchanged Hβ-zeolites exhibit higher selectivity for isomerized products than the neat Hβ-zeolite.Moreover,the Ce(III)-exchanged catalysts give higher conversions of n-heptane,whereas the La(III)-exchanged ones do not show any improvement in con-version.Under optimal conditions,the catalyst with 0.4% (by mass) Pt and 0.5% (by mass) Ce loading presents very high selectivity of isomerized products of 95.1% coupled with high n-heptane conversion of 68.7%.Effects of the ion-exchange of Ce(III) and La(III) on the catalytic performance are discussed in relation with the physico-chemical properties of catalysts.展开更多
Alumina supports modified by lanthanum (La) and barium (Ba) were prepared by peptization. Catalysts with different KOH contents supported on modified alumina were prepared by impregnation method. Various technique...Alumina supports modified by lanthanum (La) and barium (Ba) were prepared by peptization. Catalysts with different KOH contents supported on modified alumina were prepared by impregnation method. Various techniques, including N2 adsorption-desorption (Brunauer-Emmet-Teller method, BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and fourier transform infrared absorption spectroscopy (FT-IR). Catalytic activity for microalgae oil conversion to methyl ester via transesterification was evaluated and analyzed by GC-MS and GC. BET results showed that the support possessed high specific surface area, suitable pore volume and pore size distribution. Activity results indicated that the catalyst with 25 wt% KOH showed the best activity for microalgae oil conversion. XRD and SEM results revealed that Al-O-K compound was the active phase for microalgae oil conversion. The agglomeration and changing of pore structure should be the main reasons for the catalyst deactivation when KOH content was higher than 30 wt%.展开更多
Two novel washcoats Ce0.8Zr0.15La0.05Oδ and Ce0.8Zr0.2O2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce0.8Zr0.15La0.05Oδ/substrate and Pd/Ce0.8Zr0.2O2/subs...Two novel washcoats Ce0.8Zr0.15La0.05Oδ and Ce0.8Zr0.2O2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce0.8Zr0.15La0.05Oδ/substrate and Pd/Ce0.8Zr0.2O2/substrate monolithic catalysts for toluene combustion. The washcoats was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and H2-temperature-programmed reduction (H2-TPR). The result indicated that both the washcoats had strong vibration-shock resistance according to ultrasonic test. Doping La3+ into CeO2-ZrO2 solid solution could generate more oxygen vacancies, and could inhibit the sinter of CeO2-ZrO2 solid solution when calcined at high temperatures (800, 900 and 1000 °C). The washcoat Ce0.8Zr0.15La0.05Oδ had much better redox properties. The reductive temperature of Ce4+ species shifted to low temperature by 60 °C when the washcoats calcined at high temperatures (800, 900 and 1000 °C). The Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalyst calcination at 500 °C had the best catalytic activity and the 95% toluene conversion at a temperature as low as 190 °C. When calcined at low temperature (500 and 700 °C), the catalytic activity has little improvement, however, when calcined at high temperature, the catalytic activity of Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalysts had significant improvement. As catalyst washcoat, the Ce0.8Zr0.15La0.05Oδ had better thermal stability than the washcoat Ce0.8Zr0.2O2, the developed Pd/Ce0.8Zr0.15La0.05Oδ/ substrate monolithic catalyst in this work was promising for eliminating Volatile organic compounds.展开更多
The partial oxidation of ethanol to hydrogen was investigated over Ni/Fe/La catalysts prepared by the co precipitation method. The effects of introduction of La promoter and the reaction temperature on the catalytic ...The partial oxidation of ethanol to hydrogen was investigated over Ni/Fe/La catalysts prepared by the co precipitation method. The effects of introduction of La promoter and the reaction temperature on the catalytic performance were studied. It was found that the introduction of La into Ni/Fe catalysts is helpful to increase the selectivity to hydrogen and the stability of the catalysts. The results of XRD and XPS characterization show that the structure of the catalyst was changed during the reaction. The existence of LaFeO 3 species is possibly the main reason of the increase of the catalyst stability.展开更多
Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and N...Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and NOx in the mixture gas simulated the exhaust from natural gas vehicles (NGVs) operated under stoichiometric condition was investigated. The effect of La2O3 on the physicochemical properties of supports and catalysts was characterized by various techniques. The characterizations with X-ray diffraction (XRD) and Raman spectroscopy revealed that the doping of La2O3 restrained effectively the sintering of crystallite particles, maintained the crystallite particles in nanoscale and stabilized the crystal phase after calcination at 1000 ℃. The results of N2-adsorption, H2-temperatnre-programmed reduction (H2-TPR) and oxygen storage capacity (OSC) measurements indicated that La2O3 improved the textural properties, reducibility and OSC of composite supports. Activity testing results showed that the catalysts exhibit excellent activities for the simultaneous removal of methane, CO and NOx in the simulated exhaust gas. The catalysts supported on CZALa showed remarkable thermal stability and catalytic activity for the three pollutants, especially for NOx. The prepared palladium catalysts have high ability to remove NOx, CH4 and CO, and they can be used as excellent catalysts for the purification of exhaust from NGVs operated under stoichiometric condition. The catalysts reported in this work also have significant potential in industrial application because of their high performance and low cost.展开更多
A series of Ni-Mo/-A12O3 methanation catalysts containing La2O3 were prepared by impregnation. The activities of catalysts for CO and CO2 methanation were investigated. The surface properties of the catalysts were stu...A series of Ni-Mo/-A12O3 methanation catalysts containing La2O3 were prepared by impregnation. The activities of catalysts for CO and CO2 methanation were investigated. The surface properties of the catalysts were studied by TEM, XPS and chemisorption of CO. The experimental results show that the addition of La2O3 increases the activities for the methanation of CO and CO2, the dispersity of nickel on catalysts, the active nickel surface area and the concentration of nickel atoms on the surface of Ni-Mo/-Al2O3 catalysts. At the same time, it also decreases the binding energy of Ni2p,. in catalysts.展开更多
A series of hybrid catalysts were made by physically mixing Cu-ZrO2 and γ-A12O3, for former it was modified with different loadings of La2O3 prepared by co-precipitation method. The catalysts were characterized by BE...A series of hybrid catalysts were made by physically mixing Cu-ZrO2 and γ-A12O3, for former it was modified with different loadings of La2O3 prepared by co-precipitation method. The catalysts were characterized by BET, XRD, N2O-adsorption, EXAFS, H2-TPR, NH3-TPD techniques and evaluated in the synthesis of dimethyl ether from syngas. The results show that La2O3 promoted catalysts displayed a significantly better catalytic performance compared with Cu-ZrO2#y-A12O3 catalyst in CO conversion and DME selectivity, and the optimum catalytic activity was obtained when the content of La2O3 was 12 wt%. The characterizations reveal that high copper dispersion, facile reducibility of copper particles and appropriate amount of acidic sites are responsible for the superior catalytic performance.展开更多
The Ce-Zr-La-O solid solution was prepared by the sol-gel method. Thestructure and the redox behavior of Ce-Zr-La-O solid solution and CuO/Ce-Zr-La-O catalysts wereinvestigated by using XRD, Raman and TPR techniques. ...The Ce-Zr-La-O solid solution was prepared by the sol-gel method. Thestructure and the redox behavior of Ce-Zr-La-O solid solution and CuO/Ce-Zr-La-O catalysts wereinvestigated by using XRD, Raman and TPR techniques. The result shows that the reduction capabilityof Ce_(0.7)Zr_(0.3-y)La_yO solid solution is related to content of La. Appropriate content of La canenhance the redox capability of the solid solution. The oxidation activity of the CuO (6 percent)/Ce_(0.7)Zr_(0.15)La_(0.15)O catalyst is the highest. CuO, which finely dispersed and interacted withthe support, is the site of oxidation activity.展开更多
The oxidative coupling of methane to C2 hydrocarbons has been studied over a series of La-promoted CaO (La/Ca = 0.05) catalysts, prepared using different precursor salts for CaO and La2O3 (viz. acetates, carbonates...The oxidative coupling of methane to C2 hydrocarbons has been studied over a series of La-promoted CaO (La/Ca = 0.05) catalysts, prepared using different precursor salts for CaO and La2O3 (viz. acetates, carbonates, nitrates and hydroxides) and catalyst preparation methods (viz. physical mixing of precursors, co-precipitation using ammonium carbonate/sodium carbonate as a precipitating agent), under different reaction conditions (temperature: 700-850 ℃, CH4/O2 ratio: 4.0 and 8.0, and GHSV: 51360 cm^3·g^-1·h^- 1). The surface area and surface basicity/base strength distribution of the catalysts have also been investigated. The surface properties and catalytic activity/selectivity of the La-promoted CaO catalysts vary from catalyst to catalyst depending on the catalyst precursors used and catalyst preparation method. The basicity/base strength distribution is strongly influenced by the precursors (for CaO and La2O3) and catalyst preparation method. Basicity (total and strong basic sites measured in terms of CO2 chemisorbed at 50℃ and 500 ℃, respectively) observed for the catalyst prepared by co-precipitation method is higher than that of the catalysts prepared by physical mixing method. The catalysts prepared by the nitrates of La- and Ca- and co- precipitated by the solution of sodium carbonate and ammonium carbonate exhibit different catalytic performance in OCM. The finding that no direct relationship between the surface basicity and catalytic activity/selectivity in OCM exists indicates that basicity is not solely responsible for obtaining high selectivity to C2 hydrocarbons.展开更多
A series of catalysts with (Ce-Zr-La-Pr)O contents range from 0 to 50% in coating and single-palladium loads on substrates were prepared to study effects of (Ce-Zr-La-Pr)O contents on catalytic activities and durabili...A series of catalysts with (Ce-Zr-La-Pr)O contents range from 0 to 50% in coating and single-palladium loads on substrates were prepared to study effects of (Ce-Zr-La-Pr)O contents on catalytic activities and durability by contrasting the characteristics of light-off, A/F and catalytic conversions of the fresh catalysts with that of the aged catalysts. The results show that (Ce-Zr-La-Pr)O can enhance the catalysts light-off characteristics, widen A/F windows and increase catalytic conversions at a certain extent through optimizing physical structural and chemical property of the mixed coating. However, (Ce-Zr-La-Pr)O contents influence greatly on the catalysts activities and durability, and the catalysts with contents ranging from 10% to 30% exhibited better integrative properties in all samples, and 10% was the optical content to make the catalyst performance highest in this thesis. It is indicated that an suitable content of (Ce-Zr-La-Pr)O plays an important role in assisting catalysis, enhancing durability and increasing oxygen storage capability.展开更多
The influence of steam on catalytic performance for the oxidative coupling of methane(OCM) over Ba 2+ promoted La 2 O 3 catalysts was studied. It was shown that the presence of a suitable amount of stea...The influence of steam on catalytic performance for the oxidative coupling of methane(OCM) over Ba 2+ promoted La 2 O 3 catalysts was studied. It was shown that the presence of a suitable amount of steam led to a significant increase of the yield and selectivity to C 2 hydrocarbons, a decrease of selectivity to carbon monoxide and some increase of selectivity to carbon dioxide with increasing the amount of water in the feed was also observed. The activity and selectivity of the catalysts are more sensitive to the effect of steam with the variation of Ba 2+ content in the catalysts at a relatively low temperature(650℃). The comparative experiments for OCM with methane oxygen mixture diluted with nitrogen or steam were carried out in order to investigate the role of steam.展开更多
Sm2O3-LaF3 and BaF2 promoted Sm2O3W3 catalysts shown good catalytic performance for the Oxidative Dehydrogenation of Ethane(ODE). XRD and XPS characterizations of the catalysts show the structure defects, which may be...Sm2O3-LaF3 and BaF2 promoted Sm2O3W3 catalysts shown good catalytic performance for the Oxidative Dehydrogenation of Ethane(ODE). XRD and XPS characterizations of the catalysts show the structure defects, which may be produced by the partial exchange of anions and cations,enhance the electron donating ability and increase the surface absorbed oxygen concentration thus should be favorable to improve the catalytic activity. However, the higher concentration of surface adsorbed oxygen is unfavorable for the ethene selectivity.展开更多
Important effects exist between precious metals and rare earths oxides in three-way catalyst, especially the coordinated effects. These effects were studied by using H2PtCl6, Pt(NH3)2(NO2)2 and Pt(OH)2(C2H5ONH2)2 as P...Important effects exist between precious metals and rare earths oxides in three-way catalyst, especially the coordinated effects. These effects were studied by using H2PtCl6, Pt(NH3)2(NO2)2 and Pt(OH)2(C2H5ONH2)2 as Pt precursors, and the mixed oxide of (Ce-Zr-La-Pr)O as base material to prepare a series of catalysts, and their performances of the catalysts were studied by TPR and CO pulse titration technologies. The results shown that Pt precursors and their solutions pH values influenced the oxygen storage capabilities, the active metal distribution degrees of the catalysts obviously, and every catalyst prepared by different precursors had an optimal pH values. It indicates that the active metals precursors and their solutions acidities have outstanding influences on the catalysts performances for the mutual effects existing between the active metals and the Rare Earth metal oxides, which results from the mate groups of the precursors and the solution acidity.展开更多
The crystal size distribution(CSD)was determined with small angle X-ray scattering technique.Theanticoking property of Ni-catalysts was investigated with the steam reforming of n-heptane in a TG-monitoredflow reacto...The crystal size distribution(CSD)was determined with small angle X-ray scattering technique.Theanticoking property of Ni-catalysts was investigated with the steam reforming of n-heptane in a TG-monitoredflow reactor.The results of this study show that the rate of coking on the supported Ni-catalysts depends main-ly on the percentage content of the large size fraction(25-70nm)of Ni-crystallites,and that the dispersion ofNi-crystallites and the anticoking property of the Ni/α-Al<sub>2</sub>O<sub>3</sub> catalysts were promoted obviously by theLa<sub>2</sub>O<sub>3</sub>-modification method.The variation of the Ni-CSD and the anticoking property of the catalysts were fur-ther tested through different periods of hydrothermal treatment.It is found that the content of the largeNi-crystal size fraction and the coking rate pass correspondingly through a maximum.展开更多
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20873125),
文摘A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.
基金Supported by the Jiangsu Provincial Key Natural Science Foundation for Universities(06KJA53012) the National Natural Science Foundation of China(20476046 20976084)
文摘A series of Pt catalysts supported on the Hβ-zeolite that is ion-exchanged with the rare earth metal ions of Ce(III) and La(III),are prepared by impregnation,characterized by inductively coupled plasma (ICP),X-ray diffraction (XRD),BET,temperature-programmed desorption of ammonia (NH3-TPD),temperature-programmed reduction of hydrogen (H2-TPR) and H2-chemisorption techniques,and evaluated in the hydroisomerization of n-heptane with an atmospheric fixed-bed reactor.The reaction temperature,time on stream,space velocity,and the ratio of H2/n-heptane are changed to get the optimal conditions.The Ce(III) and La(III)-exchanged Hβ-zeolites exhibit higher selectivity for isomerized products than the neat Hβ-zeolite.Moreover,the Ce(III)-exchanged catalysts give higher conversions of n-heptane,whereas the La(III)-exchanged ones do not show any improvement in con-version.Under optimal conditions,the catalyst with 0.4% (by mass) Pt and 0.5% (by mass) Ce loading presents very high selectivity of isomerized products of 95.1% coupled with high n-heptane conversion of 68.7%.Effects of the ion-exchange of Ce(III) and La(III) on the catalytic performance are discussed in relation with the physico-chemical properties of catalysts.
基金supported by the Institute of Chemical Materials Foundation of CAEP(No.626010937)
文摘Alumina supports modified by lanthanum (La) and barium (Ba) were prepared by peptization. Catalysts with different KOH contents supported on modified alumina were prepared by impregnation method. Various techniques, including N2 adsorption-desorption (Brunauer-Emmet-Teller method, BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and fourier transform infrared absorption spectroscopy (FT-IR). Catalytic activity for microalgae oil conversion to methyl ester via transesterification was evaluated and analyzed by GC-MS and GC. BET results showed that the support possessed high specific surface area, suitable pore volume and pore size distribution. Activity results indicated that the catalyst with 25 wt% KOH showed the best activity for microalgae oil conversion. XRD and SEM results revealed that Al-O-K compound was the active phase for microalgae oil conversion. The agglomeration and changing of pore structure should be the main reasons for the catalyst deactivation when KOH content was higher than 30 wt%.
基金Project supported by Zhejiang Provincial Natural Science Foundation of China (203147)the National Natural Science Foundation of China (20473075)
文摘Two novel washcoats Ce0.8Zr0.15La0.05Oδ and Ce0.8Zr0.2O2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce0.8Zr0.15La0.05Oδ/substrate and Pd/Ce0.8Zr0.2O2/substrate monolithic catalysts for toluene combustion. The washcoats was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and H2-temperature-programmed reduction (H2-TPR). The result indicated that both the washcoats had strong vibration-shock resistance according to ultrasonic test. Doping La3+ into CeO2-ZrO2 solid solution could generate more oxygen vacancies, and could inhibit the sinter of CeO2-ZrO2 solid solution when calcined at high temperatures (800, 900 and 1000 °C). The washcoat Ce0.8Zr0.15La0.05Oδ had much better redox properties. The reductive temperature of Ce4+ species shifted to low temperature by 60 °C when the washcoats calcined at high temperatures (800, 900 and 1000 °C). The Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalyst calcination at 500 °C had the best catalytic activity and the 95% toluene conversion at a temperature as low as 190 °C. When calcined at low temperature (500 and 700 °C), the catalytic activity has little improvement, however, when calcined at high temperature, the catalytic activity of Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalysts had significant improvement. As catalyst washcoat, the Ce0.8Zr0.15La0.05Oδ had better thermal stability than the washcoat Ce0.8Zr0.2O2, the developed Pd/Ce0.8Zr0.15La0.05Oδ/ substrate monolithic catalyst in this work was promising for eliminating Volatile organic compounds.
基金Supported by the 973project of China(G2 0 0 0 0 2 6 4 )
文摘The partial oxidation of ethanol to hydrogen was investigated over Ni/Fe/La catalysts prepared by the co precipitation method. The effects of introduction of La promoter and the reaction temperature on the catalytic performance were studied. It was found that the introduction of La into Ni/Fe catalysts is helpful to increase the selectivity to hydrogen and the stability of the catalysts. The results of XRD and XPS characterization show that the structure of the catalyst was changed during the reaction. The existence of LaFeO 3 species is possibly the main reason of the increase of the catalyst stability.
基金supported by the National Natural Science Foundation of China (No. 20773090, 20803049)the National High Technology Researchand Development Program of China (863 Program, No. 2006AA06Z347)the Specialized Research Fund for the Doctoral Program of Higher Education(20070610026)
文摘Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and NOx in the mixture gas simulated the exhaust from natural gas vehicles (NGVs) operated under stoichiometric condition was investigated. The effect of La2O3 on the physicochemical properties of supports and catalysts was characterized by various techniques. The characterizations with X-ray diffraction (XRD) and Raman spectroscopy revealed that the doping of La2O3 restrained effectively the sintering of crystallite particles, maintained the crystallite particles in nanoscale and stabilized the crystal phase after calcination at 1000 ℃. The results of N2-adsorption, H2-temperatnre-programmed reduction (H2-TPR) and oxygen storage capacity (OSC) measurements indicated that La2O3 improved the textural properties, reducibility and OSC of composite supports. Activity testing results showed that the catalysts exhibit excellent activities for the simultaneous removal of methane, CO and NOx in the simulated exhaust gas. The catalysts supported on CZALa showed remarkable thermal stability and catalytic activity for the three pollutants, especially for NOx. The prepared palladium catalysts have high ability to remove NOx, CH4 and CO, and they can be used as excellent catalysts for the purification of exhaust from NGVs operated under stoichiometric condition. The catalysts reported in this work also have significant potential in industrial application because of their high performance and low cost.
文摘A series of Ni-Mo/-A12O3 methanation catalysts containing La2O3 were prepared by impregnation. The activities of catalysts for CO and CO2 methanation were investigated. The surface properties of the catalysts were studied by TEM, XPS and chemisorption of CO. The experimental results show that the addition of La2O3 increases the activities for the methanation of CO and CO2, the dispersity of nickel on catalysts, the active nickel surface area and the concentration of nickel atoms on the surface of Ni-Mo/-Al2O3 catalysts. At the same time, it also decreases the binding energy of Ni2p,. in catalysts.
基金supported by the Ministry of Science and Technology of the People’s Republic of China (No. 2011BAD22B06)the Chinese Academy of Sciences (No. GJHZ1025,Y2010022,KGCX2-YW-329)
文摘A series of hybrid catalysts were made by physically mixing Cu-ZrO2 and γ-A12O3, for former it was modified with different loadings of La2O3 prepared by co-precipitation method. The catalysts were characterized by BET, XRD, N2O-adsorption, EXAFS, H2-TPR, NH3-TPD techniques and evaluated in the synthesis of dimethyl ether from syngas. The results show that La2O3 promoted catalysts displayed a significantly better catalytic performance compared with Cu-ZrO2#y-A12O3 catalyst in CO conversion and DME selectivity, and the optimum catalytic activity was obtained when the content of La2O3 was 12 wt%. The characterizations reveal that high copper dispersion, facile reducibility of copper particles and appropriate amount of acidic sites are responsible for the superior catalytic performance.
文摘The Ce-Zr-La-O solid solution was prepared by the sol-gel method. Thestructure and the redox behavior of Ce-Zr-La-O solid solution and CuO/Ce-Zr-La-O catalysts wereinvestigated by using XRD, Raman and TPR techniques. The result shows that the reduction capabilityof Ce_(0.7)Zr_(0.3-y)La_yO solid solution is related to content of La. Appropriate content of La canenhance the redox capability of the solid solution. The oxidation activity of the CuO (6 percent)/Ce_(0.7)Zr_(0.15)La_(0.15)O catalyst is the highest. CuO, which finely dispersed and interacted withthe support, is the site of oxidation activity.
文摘The oxidative coupling of methane to C2 hydrocarbons has been studied over a series of La-promoted CaO (La/Ca = 0.05) catalysts, prepared using different precursor salts for CaO and La2O3 (viz. acetates, carbonates, nitrates and hydroxides) and catalyst preparation methods (viz. physical mixing of precursors, co-precipitation using ammonium carbonate/sodium carbonate as a precipitating agent), under different reaction conditions (temperature: 700-850 ℃, CH4/O2 ratio: 4.0 and 8.0, and GHSV: 51360 cm^3·g^-1·h^- 1). The surface area and surface basicity/base strength distribution of the catalysts have also been investigated. The surface properties and catalytic activity/selectivity of the La-promoted CaO catalysts vary from catalyst to catalyst depending on the catalyst precursors used and catalyst preparation method. The basicity/base strength distribution is strongly influenced by the precursors (for CaO and La2O3) and catalyst preparation method. Basicity (total and strong basic sites measured in terms of CO2 chemisorbed at 50℃ and 500 ℃, respectively) observed for the catalyst prepared by co-precipitation method is higher than that of the catalysts prepared by physical mixing method. The catalysts prepared by the nitrates of La- and Ca- and co- precipitated by the solution of sodium carbonate and ammonium carbonate exhibit different catalytic performance in OCM. The finding that no direct relationship between the surface basicity and catalytic activity/selectivity in OCM exists indicates that basicity is not solely responsible for obtaining high selectivity to C2 hydrocarbons.
文摘A series of catalysts with (Ce-Zr-La-Pr)O contents range from 0 to 50% in coating and single-palladium loads on substrates were prepared to study effects of (Ce-Zr-La-Pr)O contents on catalytic activities and durability by contrasting the characteristics of light-off, A/F and catalytic conversions of the fresh catalysts with that of the aged catalysts. The results show that (Ce-Zr-La-Pr)O can enhance the catalysts light-off characteristics, widen A/F windows and increase catalytic conversions at a certain extent through optimizing physical structural and chemical property of the mixed coating. However, (Ce-Zr-La-Pr)O contents influence greatly on the catalysts activities and durability, and the catalysts with contents ranging from 10% to 30% exhibited better integrative properties in all samples, and 10% was the optical content to make the catalyst performance highest in this thesis. It is indicated that an suitable content of (Ce-Zr-La-Pr)O plays an important role in assisting catalysis, enhancing durability and increasing oxygen storage capability.
文摘The influence of steam on catalytic performance for the oxidative coupling of methane(OCM) over Ba 2+ promoted La 2 O 3 catalysts was studied. It was shown that the presence of a suitable amount of steam led to a significant increase of the yield and selectivity to C 2 hydrocarbons, a decrease of selectivity to carbon monoxide and some increase of selectivity to carbon dioxide with increasing the amount of water in the feed was also observed. The activity and selectivity of the catalysts are more sensitive to the effect of steam with the variation of Ba 2+ content in the catalysts at a relatively low temperature(650℃). The comparative experiments for OCM with methane oxygen mixture diluted with nitrogen or steam were carried out in order to investigate the role of steam.
文摘Sm2O3-LaF3 and BaF2 promoted Sm2O3W3 catalysts shown good catalytic performance for the Oxidative Dehydrogenation of Ethane(ODE). XRD and XPS characterizations of the catalysts show the structure defects, which may be produced by the partial exchange of anions and cations,enhance the electron donating ability and increase the surface absorbed oxygen concentration thus should be favorable to improve the catalytic activity. However, the higher concentration of surface adsorbed oxygen is unfavorable for the ethene selectivity.
基金Project supported by the National High Technology Research and Development Programs (863 ) of China (2002 AA321060, 2004AA649040) Yunnan Province Science Technology Program (2004B0028Q)
文摘Important effects exist between precious metals and rare earths oxides in three-way catalyst, especially the coordinated effects. These effects were studied by using H2PtCl6, Pt(NH3)2(NO2)2 and Pt(OH)2(C2H5ONH2)2 as Pt precursors, and the mixed oxide of (Ce-Zr-La-Pr)O as base material to prepare a series of catalysts, and their performances of the catalysts were studied by TPR and CO pulse titration technologies. The results shown that Pt precursors and their solutions pH values influenced the oxygen storage capabilities, the active metal distribution degrees of the catalysts obviously, and every catalyst prepared by different precursors had an optimal pH values. It indicates that the active metals precursors and their solutions acidities have outstanding influences on the catalysts performances for the mutual effects existing between the active metals and the Rare Earth metal oxides, which results from the mate groups of the precursors and the solution acidity.
文摘The crystal size distribution(CSD)was determined with small angle X-ray scattering technique.Theanticoking property of Ni-catalysts was investigated with the steam reforming of n-heptane in a TG-monitoredflow reactor.The results of this study show that the rate of coking on the supported Ni-catalysts depends main-ly on the percentage content of the large size fraction(25-70nm)of Ni-crystallites,and that the dispersion ofNi-crystallites and the anticoking property of the Ni/α-Al<sub>2</sub>O<sub>3</sub> catalysts were promoted obviously by theLa<sub>2</sub>O<sub>3</sub>-modification method.The variation of the Ni-CSD and the anticoking property of the catalysts were fur-ther tested through different periods of hydrothermal treatment.It is found that the content of the largeNi-crystal size fraction and the coking rate pass correspondingly through a maximum.