The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and...The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and SEM analyses indicated that primary Si particles were significantly refined from coarse block-like and irregular polygonal shapes into fine flaky shapes,while eutectic Si particles were modified from coarse and needle-like into fine and rod-or coral-like shapes with increase of La-Ce addition.The alloy exhibited the minimum primary Si particle size and the best mechanical properties with the addition of 0.3 wt.%La-Ce.The average particle size decreased from 61 to 28 μm,the ultimate tensile strength increased from 222 to 242 MPa and the elongation increased from 3.2% to 6.3%.In addition,modification mechanisms and fracture modes were explored by the means of SEM and EPMA.展开更多
La,Ce是丰度最高的稀土元素,主要用于催化和抛光材料。研究了从稀土盐到含F的La-Ce复合氧化物的制备过程,以及La/Ce比例、氟化过程、干燥过程及焙烧温度等对制备的含氟镧铈复合氧化物结构、粒径和形貌的影响。结果表明,用Na F 90℃氟化2...La,Ce是丰度最高的稀土元素,主要用于催化和抛光材料。研究了从稀土盐到含F的La-Ce复合氧化物的制备过程,以及La/Ce比例、氟化过程、干燥过程及焙烧温度等对制备的含氟镧铈复合氧化物结构、粒径和形貌的影响。结果表明,用Na F 90℃氟化2 h,经喷雾干燥,采用分段焙烧技术,最终经850℃焙烧后可制备出颗粒分布均匀、团聚少、呈椭球形的含F的La-Ce铈复合氧化物。制备的样品用于旭硝子玻璃的研磨抛光,测得切削率0.115 mm/20 min,样品合格率约为90%。展开更多
RE_(2)Fe_(14)B-based(RE,rare earth)permanent magnets containing abundant and cheap La/Ce have attracted intense attention recently.In comparison with Ce that can fully replace Nd in the 2:14:1 lattice,La substitution ...RE_(2)Fe_(14)B-based(RE,rare earth)permanent magnets containing abundant and cheap La/Ce have attracted intense attention recently.In comparison with Ce that can fully replace Nd in the 2:14:1 lattice,La substitution for Nd has long been limited at a low level.Here we present that through doping La35 Ce65 alloy with the La/Ce ratio in natural mineral,stable 2:14:1 phase can be maintained at 1273 K within the entire substitution range of[(La_(35)Ce_(65))、(Pr_(20)Nd_(80))_(1-x)]_(2.14)Fe_(14)B(0.6≤x≤1.0,at.%),as verified by composition analysis,microstructural characterization and magnetic measurements.Interestingly,the promoted La solution in 2:14:1 phase induces two unique findings upon coexisting La-Ce-Pr-Nd:i)Compared to Ce that fits well with the nominal concentration,La deviates noticeably from the nominal one;ii)Nanoscale spinodal-decomposition-like phase separation is observed due to different solubilities of La-Ce-Pr-Nd elements in 2:14:1 phase.Above joint effects induce higher Curie temperature than estimation based on the rule of mixture,which delights the prospect of La_(35)Ce_(65)alloy in developing low-cost permanent materials.展开更多
基金Project(51274245) supported by the National Natural Science Foundation of China
文摘The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and SEM analyses indicated that primary Si particles were significantly refined from coarse block-like and irregular polygonal shapes into fine flaky shapes,while eutectic Si particles were modified from coarse and needle-like into fine and rod-or coral-like shapes with increase of La-Ce addition.The alloy exhibited the minimum primary Si particle size and the best mechanical properties with the addition of 0.3 wt.%La-Ce.The average particle size decreased from 61 to 28 μm,the ultimate tensile strength increased from 222 to 242 MPa and the elongation increased from 3.2% to 6.3%.In addition,modification mechanisms and fracture modes were explored by the means of SEM and EPMA.
基金supported by the National Key Research and Development Program of China(2016YFB0700902)the National Natural Science Foundation of China(51801181 and 51590881)+3 种基金the Public Technology Application Research Projects of Zhejiang Province(LGG20E010007)the Fundamental Research Funds for the Central Universities(2019QNA4011)the funds of State Key Laboratory of Baiyunobo Rare Earth Resource Researches andComprehensiveUtilization(2020Z2122)State Key Laboratory of Solidification Processing in NPU(SKLSP202003)。
文摘RE_(2)Fe_(14)B-based(RE,rare earth)permanent magnets containing abundant and cheap La/Ce have attracted intense attention recently.In comparison with Ce that can fully replace Nd in the 2:14:1 lattice,La substitution for Nd has long been limited at a low level.Here we present that through doping La35 Ce65 alloy with the La/Ce ratio in natural mineral,stable 2:14:1 phase can be maintained at 1273 K within the entire substitution range of[(La_(35)Ce_(65))、(Pr_(20)Nd_(80))_(1-x)]_(2.14)Fe_(14)B(0.6≤x≤1.0,at.%),as verified by composition analysis,microstructural characterization and magnetic measurements.Interestingly,the promoted La solution in 2:14:1 phase induces two unique findings upon coexisting La-Ce-Pr-Nd:i)Compared to Ce that fits well with the nominal concentration,La deviates noticeably from the nominal one;ii)Nanoscale spinodal-decomposition-like phase separation is observed due to different solubilities of La-Ce-Pr-Nd elements in 2:14:1 phase.Above joint effects induce higher Curie temperature than estimation based on the rule of mixture,which delights the prospect of La_(35)Ce_(65)alloy in developing low-cost permanent materials.