采用陶瓷法,使用La、Co分别取代部分Ca和Fe,制成以分子式Ca_(1-x-x')LaxSr_(x')Fe_(2n-y)Co_yO_(19)(x,x',y和n分别满足关系式:0.2≤x≤0.7,0≤x'≤0.3,0≤y≤0.5和4.5≤n≤6.0)为主相的六方晶系铁氧体。采用该铁氧体...采用陶瓷法,使用La、Co分别取代部分Ca和Fe,制成以分子式Ca_(1-x-x')LaxSr_(x')Fe_(2n-y)Co_yO_(19)(x,x',y和n分别满足关系式:0.2≤x≤0.7,0≤x'≤0.3,0≤y≤0.5和4.5≤n≤6.0)为主相的六方晶系铁氧体。采用该铁氧体制备的磁体其Br/G+1/3H_(cj)/Oe在6200以上。磁性能为:剩磁B_r=449 m T,矫顽力H_(cb)=339 k A/m,内禀矫顽力H_(cj)=424 k A/m,最大磁能积(BH)max=39.2 k J/m^3。相比La-Co取代各向异性锶铁氧体,La-Co取代各向异性钙铁氧体在磁性能上表现出明显的优越性。展开更多
The electrolytic codeposition of lanthanum-cobalt in the melt consisting of urea-NaCl-NaAc-CoCl2-LaCl3 was studied by means of cyclic voltammetry, electron probe analyser, X-ray diffraction. Cathodic potential, curren...The electrolytic codeposition of lanthanum-cobalt in the melt consisting of urea-NaCl-NaAc-CoCl2-LaCl3 was studied by means of cyclic voltammetry, electron probe analyser, X-ray diffraction. Cathodic potential, current density, La3+/Co2+ molar ratio in the melt and the electrode substrates all exercise influence on the content of lanthanum deposied. The deposites consist of cobalt and lanthanum, but they don't form any intermetallic compound.展开更多
La-Co substituted M-type barium ferrites (BaM) were prepared by traditional solid state method and sintered at low tem- perature (1173 K). X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrat...La-Co substituted M-type barium ferrites (BaM) were prepared by traditional solid state method and sintered at low tem- perature (1173 K). X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) were employed to investigate the influence of La-Co on the structure and magnetic properties of the samples. By sintering at 1173 K for 6 h in air, single phase M-type barium ferrites with chemical composition of Ba(LaCo)xFel〉z^Oj9 (x=0.0~).5) were formed. M-H curves showed that the magnetic properties of barium ferrites were obviously effected by La-Co substitution. The saturation magnetization (Ms) and coercivity (He) reached the maximum value of 65.15 AmZ/kg and 4165 Oe, respectively. This behavior was attributed to the sites of La-Co substitutions and the particles size. SEM revealed that the shape of ferrite particles was influenced by La-Co substitution.展开更多
The La-Co substituted Sr1–xLaxFe12–xCoxO19 (x=0–0.5) ferrites with appropriate Bi2O3 additive were prepared by conventional sintering method and microwave sintering method at low sintering temperatures compatible w...The La-Co substituted Sr1–xLaxFe12–xCoxO19 (x=0–0.5) ferrites with appropriate Bi2O3 additive were prepared by conventional sintering method and microwave sintering method at low sintering temperatures compatible with LTCC (low temperature co-fired ceramics) systems, and their sintering behavior was chiefly investigated, including the crystal structure, saturation magnetizationMs, magnetic anisotropy fieldHa, intrinsic coercivityHci, and Curie temperatureTC. Experiment results clearly showed that the pure M-type crystal phase was successfully obtained when the La-Co substitution amountx did not exceed 0.3. However, the single M-type phase structure transformed to multiphase structure with further increased x, where the M-type phase coexisted with the non-magnetic phase such asα-Fe2O3 phase, La2O3 phase, and LaCoO3 phase. Appropriate La-Co substitution improved theMs (>62 emu/g),Ha (>1400 kA/m), andHci (>320 kA/m) for the ferrites withx varying from 0.1 to 0.3, but theTC decreased with increasing substitution amount. More-over, the microwave sintered ferrites could provide largerHci and similarMs compared with the conventional sintered ferrites.展开更多
文摘采用陶瓷法,使用La、Co分别取代部分Ca和Fe,制成以分子式Ca_(1-x-x')LaxSr_(x')Fe_(2n-y)Co_yO_(19)(x,x',y和n分别满足关系式:0.2≤x≤0.7,0≤x'≤0.3,0≤y≤0.5和4.5≤n≤6.0)为主相的六方晶系铁氧体。采用该铁氧体制备的磁体其Br/G+1/3H_(cj)/Oe在6200以上。磁性能为:剩磁B_r=449 m T,矫顽力H_(cb)=339 k A/m,内禀矫顽力H_(cj)=424 k A/m,最大磁能积(BH)max=39.2 k J/m^3。相比La-Co取代各向异性锶铁氧体,La-Co取代各向异性钙铁氧体在磁性能上表现出明显的优越性。
文摘The electrolytic codeposition of lanthanum-cobalt in the melt consisting of urea-NaCl-NaAc-CoCl2-LaCl3 was studied by means of cyclic voltammetry, electron probe analyser, X-ray diffraction. Cathodic potential, current density, La3+/Co2+ molar ratio in the melt and the electrode substrates all exercise influence on the content of lanthanum deposied. The deposites consist of cobalt and lanthanum, but they don't form any intermetallic compound.
基金Project supported by the National Basic Research Program of China(2012CB933100)National Natural Science Foundation of China(61001025,60721001,51132003,61171047)+2 种基金support of the Fundamental Research Funds for the Central Universities (ZYGX2011X006)the second item of strongpoint industry of Guangdong province (2012A090100001)the Opening Fund of State Key Laboratory of Electronic Thin Films and Integrated Devices (KFJJ201102)
文摘La-Co substituted M-type barium ferrites (BaM) were prepared by traditional solid state method and sintered at low tem- perature (1173 K). X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) were employed to investigate the influence of La-Co on the structure and magnetic properties of the samples. By sintering at 1173 K for 6 h in air, single phase M-type barium ferrites with chemical composition of Ba(LaCo)xFel〉z^Oj9 (x=0.0~).5) were formed. M-H curves showed that the magnetic properties of barium ferrites were obviously effected by La-Co substitution. The saturation magnetization (Ms) and coercivity (He) reached the maximum value of 65.15 AmZ/kg and 4165 Oe, respectively. This behavior was attributed to the sites of La-Co substitutions and the particles size. SEM revealed that the shape of ferrite particles was influenced by La-Co substitution.
基金supported by the National Public Welfare Fund Industry Research(201410026)Scientific Research Foundation of Education Office of Sichuan Province(13Z198)the Young and Middle-aged Academic Leaders of Scientific Research Funds of Chengdu University of Information Technology(J201222)
文摘The La-Co substituted Sr1–xLaxFe12–xCoxO19 (x=0–0.5) ferrites with appropriate Bi2O3 additive were prepared by conventional sintering method and microwave sintering method at low sintering temperatures compatible with LTCC (low temperature co-fired ceramics) systems, and their sintering behavior was chiefly investigated, including the crystal structure, saturation magnetizationMs, magnetic anisotropy fieldHa, intrinsic coercivityHci, and Curie temperatureTC. Experiment results clearly showed that the pure M-type crystal phase was successfully obtained when the La-Co substitution amountx did not exceed 0.3. However, the single M-type phase structure transformed to multiphase structure with further increased x, where the M-type phase coexisted with the non-magnetic phase such asα-Fe2O3 phase, La2O3 phase, and LaCoO3 phase. Appropriate La-Co substitution improved theMs (>62 emu/g),Ha (>1400 kA/m), andHci (>320 kA/m) for the ferrites withx varying from 0.1 to 0.3, but theTC decreased with increasing substitution amount. More-over, the microwave sintered ferrites could provide largerHci and similarMs compared with the conventional sintered ferrites.