The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni...The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni9 phase (PuNi3 structure) and La4MgNi19 phases (Ce5Co19+Pr5Co19 structure, namely A5B19 type). With the increase of the x value, the LaMg2Ni9 phase fades away and La4MgNi19 phases appear, while the abundance of LaNi5 phase firstly increases and then decreases. At the same time, the cell volume of LaNi5 phase and LaMg2Ni9 phase decreases. The electrochemical measurement shows that alloy electrodes could be activated in 4-5 cycles, and with the increase of the x value, the maximum discharge capacity gradually increases from 330.9 mA-h/g (x=0) to 366.8 mA-h/g (x=0.4), but the high-rate dischargeability (HRD) and cyclic stability (S) decrease somewhat (x=0.4, HRD600=82.32%, S100=73.8%). It is found that the HRD is mainly controlled by the electrocatalytic activity on the alloy electrode surface, and the decline of cyclic stability is due to the appearance of A5B19 type phase with larger hydrogen storage capacity, which leads to larger volume expansion and more intercrystalline stress and then easier pulverization during charging/discharging.展开更多
In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0...In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0, 0.10, 0.15, 0.2) hydrogen storage alloys were prepared. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analyses revealed that two alloys (x=0.0 and 0.10) were composed of (La,Mg)2(Ni,Al)7 phase, La(Ni,A1)5 phase and (La,Mg)Ni2 phase, while other alloys (x=0.15 and 0.20) consisted of (La,Mg)2(Ni,A1)7 phase, La(Ni,A1)5 phase, (La,Mg)Ni2 phase and (La,Mg)(Ni,A1)3 phase. All alloys showed, however, only one pressure plateau in P-C isotherms. The Pr/La ratio in alloy composition influenced hydrogen storage capacity and kinetics properties. Electrochemical studies showed that the discharge capacity decreased from 360 mAh/g (x=-0.00) to 335 mAh/g (x=-0.20) as x increased. But the high-rate dischargeability (HRD) of alloy electrodes increased from 26% (x=0.00) to 56% (x=-0.20) at a discharge current density of Id=1800 mA/g. Anode polarization measurements were done to further understand the electrochemical kinetics properties after Pr substitution.展开更多
Structural analysis was made using X-ray diffraction (XRD) Rietveld refinement on a series of La1+xMg2-xNi9 (x=0.0-1.0) ternary alloys. Results showed that each of La1+xMg2-xNi9 alloys was a PuNi3-type structure stack...Structural analysis was made using X-ray diffraction (XRD) Rietveld refinement on a series of La1+xMg2-xNi9 (x=0.0-1.0) ternary alloys. Results showed that each of La1+xMg2-xNi9 alloys was a PuNi3-type structure stacked by LaNi5 and (La, Mg) Ni2 blocks. Electrochemical tests revealed that discharge abilities of these La-Mg-Ni ternary alloys mainly depended on their atomic distances between (La, Mg) and Ni, which could be modified by varying the atomic ratios of La/Mg.展开更多
Rare earth-based superlattice alloys have great potential for gaseous hydrogen storage,as well as successful application as nickel-metal hydride batteries anodes.In this work,Y substitution was carried out to adjust t...Rare earth-based superlattice alloys have great potential for gaseous hydrogen storage,as well as successful application as nickel-metal hydride batteries anodes.In this work,Y substitution was carried out to adjust the gaseous hydrogen storage properties of A_(2)B_(7)-type La_(0.7)Mg_(0.3)Ni_(3.5)alloys.The results indicate a multiphase structure in the alloys comprised of the main rhombohedral Gd_(2)Co_(7)and PuNi_(3)phases,with a small amount of CaCu_(5)phase.Moreover,the Y substitution results in higher abundance of the Gd_(2)Co_(7)phase.The alloy La_(0.42)Y_(0.28)Mg_(0.3)Ni_(3.5)exhibits a hydrogen storage cap acity of 1.55 wt%at 298 K and a desorption plateau pressure of 0.244 MPa.In addition,this alloy demonstrates a stable cycle life by a capacity retention of 94.2%after 50 cycles,with the main capacity degradation occurring during the initial 20 cycles.This work accentuates the potential of the La-Y-Mg-Ni-based superlattice alloys for applications in solid-state hydrogen storage.展开更多
Phase compositions, morphologies and hydrogen storage properties of the as-cast and copper-mould-cast LaMgaNi alloys were studied. The dehydriding onset temperature of the as-cast alloy hydride was about 500 K, which ...Phase compositions, morphologies and hydrogen storage properties of the as-cast and copper-mould-cast LaMgaNi alloys were studied. The dehydriding onset temperature of the as-cast alloy hydride was about 500 K, which was at least 50 K higher than that of the copper-mould-cast one, and the copper-mould-cast alloy hydride had a faster dehydriding rate compared with as-cast one. Additionally, the copper-mould-cast alloy could uptake 2.85 wt.% hydrogen, which was 95.0% of saturated hydrogen storage capac- ity at room temperature. While only 1.80 wt.% hydrogen (60% of saturated capacity) was absorbed for the as-cast alloy under the same conditions. The reversible hydrogen storage capacities and plateau hydrogen pressures of the two alloys were close. X-ray dif- fractions and scanning electron microscopy results indicated that similar thermodynamic property of the two alloys should be ascribed to the same hydrogen storage phase, Mg and MgzNi. The better hydrogen sorption kinetics of copper-mould-cast alloy should be as- cribed to the more uniform phase distribution compared with that of the as-cast one.展开更多
In order to investigate the effect of different B-site additions on phase structure and electrochemical properties of cobalt-free La-Mg-Ni based alloys, La0.80Mg0.20Ni2.85Al0.11M0.53 (M=Ni, Si, Cr, Cu, Fe) hydrogen ...In order to investigate the effect of different B-site additions on phase structure and electrochemical properties of cobalt-free La-Mg-Ni based alloys, La0.80Mg0.20Ni2.85Al0.11M0.53 (M=Ni, Si, Cr, Cu, Fe) hydrogen storage alloys were prepared and studied systematically. X-ray powder diffraction showed that the alloys consisted mainly of LaNi3 phase and LaNi5 phase except that Cr addition caused a minor Cr phase. Electrochemical testing indicated that alloys with additional Ni, Cr, Cu or Fe were activated within only 1-2 cycles, while that with Si addition needed 4 cycles. Adding Si, Cu and Fe increased cycling stability of La-Mg-Ni based alloys. However, maximum discharge capacity decreased from 362 mAh/g to 215 mAh/g in the order of Ni〉Fe〉Cu〉Cr〉Si. In addition, electrochemical kinetics of alloy electrodes was also researched by measuring high rate discharge ability (HRD), hydrogen diffusion coefficient (D) and limiting current density (IL).展开更多
基金Project (2008CL068L) supported by the Natural Science Research Project of Higher Education of Jiangsu Province, ChinaProject (50901036) supported by the National Natural Science Foundation of China
文摘The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni9 phase (PuNi3 structure) and La4MgNi19 phases (Ce5Co19+Pr5Co19 structure, namely A5B19 type). With the increase of the x value, the LaMg2Ni9 phase fades away and La4MgNi19 phases appear, while the abundance of LaNi5 phase firstly increases and then decreases. At the same time, the cell volume of LaNi5 phase and LaMg2Ni9 phase decreases. The electrochemical measurement shows that alloy electrodes could be activated in 4-5 cycles, and with the increase of the x value, the maximum discharge capacity gradually increases from 330.9 mA-h/g (x=0) to 366.8 mA-h/g (x=0.4), but the high-rate dischargeability (HRD) and cyclic stability (S) decrease somewhat (x=0.4, HRD600=82.32%, S100=73.8%). It is found that the HRD is mainly controlled by the electrocatalytic activity on the alloy electrode surface, and the decline of cyclic stability is due to the appearance of A5B19 type phase with larger hydrogen storage capacity, which leads to larger volume expansion and more intercrystalline stress and then easier pulverization during charging/discharging.
基金supported by the Key Projects in International Science and Technology Cooperation from Ministry of Science and Technology of the PRC (2006DFB52550, 2007DFA51020)the National Natural Science Foundation of China (20363001)
文摘In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0, 0.10, 0.15, 0.2) hydrogen storage alloys were prepared. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analyses revealed that two alloys (x=0.0 and 0.10) were composed of (La,Mg)2(Ni,Al)7 phase, La(Ni,A1)5 phase and (La,Mg)Ni2 phase, while other alloys (x=0.15 and 0.20) consisted of (La,Mg)2(Ni,A1)7 phase, La(Ni,A1)5 phase, (La,Mg)Ni2 phase and (La,Mg)(Ni,A1)3 phase. All alloys showed, however, only one pressure plateau in P-C isotherms. The Pr/La ratio in alloy composition influenced hydrogen storage capacity and kinetics properties. Electrochemical studies showed that the discharge capacity decreased from 360 mAh/g (x=-0.00) to 335 mAh/g (x=-0.20) as x increased. But the high-rate dischargeability (HRD) of alloy electrodes increased from 26% (x=0.00) to 56% (x=-0.20) at a discharge current density of Id=1800 mA/g. Anode polarization measurements were done to further understand the electrochemical kinetics properties after Pr substitution.
基金This work was supported by the National Natural Science Foundation of China under grant No.50071052 and No.50131040.
文摘Structural analysis was made using X-ray diffraction (XRD) Rietveld refinement on a series of La1+xMg2-xNi9 (x=0.0-1.0) ternary alloys. Results showed that each of La1+xMg2-xNi9 alloys was a PuNi3-type structure stacked by LaNi5 and (La, Mg) Ni2 blocks. Electrochemical tests revealed that discharge abilities of these La-Mg-Ni ternary alloys mainly depended on their atomic distances between (La, Mg) and Ni, which could be modified by varying the atomic ratios of La/Mg.
基金Project supported by the National Natural Science Foundation of China(52271214,51831009)。
文摘Rare earth-based superlattice alloys have great potential for gaseous hydrogen storage,as well as successful application as nickel-metal hydride batteries anodes.In this work,Y substitution was carried out to adjust the gaseous hydrogen storage properties of A_(2)B_(7)-type La_(0.7)Mg_(0.3)Ni_(3.5)alloys.The results indicate a multiphase structure in the alloys comprised of the main rhombohedral Gd_(2)Co_(7)and PuNi_(3)phases,with a small amount of CaCu_(5)phase.Moreover,the Y substitution results in higher abundance of the Gd_(2)Co_(7)phase.The alloy La_(0.42)Y_(0.28)Mg_(0.3)Ni_(3.5)exhibits a hydrogen storage cap acity of 1.55 wt%at 298 K and a desorption plateau pressure of 0.244 MPa.In addition,this alloy demonstrates a stable cycle life by a capacity retention of 94.2%after 50 cycles,with the main capacity degradation occurring during the initial 20 cycles.This work accentuates the potential of the La-Y-Mg-Ni-based superlattice alloys for applications in solid-state hydrogen storage.
基金Project supported by National Natural Science Foundation of China(51001043,50971112)Program for New Century Excellent Talents in University(NCET-11-0943)+3 种基金China Postdoctoral Science Special Foundation(201104390)Foundation for University Youth Key Teacher of Henan Province(2011GGJS-052)Program for Innovative Research Team(in Science and Technology)in University of Henan Province(2012IRTSTHN007)Doctoral Foundation of Henan Polytechnic University(B2010-13)
文摘Phase compositions, morphologies and hydrogen storage properties of the as-cast and copper-mould-cast LaMgaNi alloys were studied. The dehydriding onset temperature of the as-cast alloy hydride was about 500 K, which was at least 50 K higher than that of the copper-mould-cast one, and the copper-mould-cast alloy hydride had a faster dehydriding rate compared with as-cast one. Additionally, the copper-mould-cast alloy could uptake 2.85 wt.% hydrogen, which was 95.0% of saturated hydrogen storage capac- ity at room temperature. While only 1.80 wt.% hydrogen (60% of saturated capacity) was absorbed for the as-cast alloy under the same conditions. The reversible hydrogen storage capacities and plateau hydrogen pressures of the two alloys were close. X-ray dif- fractions and scanning electron microscopy results indicated that similar thermodynamic property of the two alloys should be ascribed to the same hydrogen storage phase, Mg and MgzNi. The better hydrogen sorption kinetics of copper-mould-cast alloy should be as- cribed to the more uniform phase distribution compared with that of the as-cast one.
基金supported by the National Natural Science Foundation of China (20673093)the Natural Science Foundation of Hebei Province (B2007000303)Support Program for Hundred Excellent Innovation Talents from the Universities and Colleges of Hebei Province
文摘In order to investigate the effect of different B-site additions on phase structure and electrochemical properties of cobalt-free La-Mg-Ni based alloys, La0.80Mg0.20Ni2.85Al0.11M0.53 (M=Ni, Si, Cr, Cu, Fe) hydrogen storage alloys were prepared and studied systematically. X-ray powder diffraction showed that the alloys consisted mainly of LaNi3 phase and LaNi5 phase except that Cr addition caused a minor Cr phase. Electrochemical testing indicated that alloys with additional Ni, Cr, Cu or Fe were activated within only 1-2 cycles, while that with Si addition needed 4 cycles. Adding Si, Cu and Fe increased cycling stability of La-Mg-Ni based alloys. However, maximum discharge capacity decreased from 362 mAh/g to 215 mAh/g in the order of Ni〉Fe〉Cu〉Cr〉Si. In addition, electrochemical kinetics of alloy electrodes was also researched by measuring high rate discharge ability (HRD), hydrogen diffusion coefficient (D) and limiting current density (IL).