用XRD、SEM、EDS和电化学测试方法研究了退火温度对A_2B_7型La_(0.33)Y_(0.67)Ni_(3.25)Mn_(0.15)Al_(0.1)储氢合金微观组织和电化学性能的影响规律。结果表明,合金铸态组织由2H-Ce_2Ni_7、3R-Gd_2Co_7、CaCu_5和3R-Ce_5Co_(19)型相组成...用XRD、SEM、EDS和电化学测试方法研究了退火温度对A_2B_7型La_(0.33)Y_(0.67)Ni_(3.25)Mn_(0.15)Al_(0.1)储氢合金微观组织和电化学性能的影响规律。结果表明,合金铸态组织由2H-Ce_2Ni_7、3R-Gd_2Co_7、CaCu_5和3R-Ce_5Co_(19)型相组成;随退火温度(850~950℃)升高,Ce_2Ni_7型主相丰度和晶胞体积逐渐增加,至950℃退火后,CaCu_5和Gd_2Co_7型相基本消失,主相Ce_2Ni_7型相丰度和晶胞体积均达到最大值;退火温度≥950℃时,Ce_2Ni_7型和Ce_5Co_(19)型相丰度分别又有所减少和增加。950℃退火合金具有较低的放氢平台压(1.92~8.70 k Pa)和较高的电化学放电容量(371 mAh/g),经100次充放电循环后其容量保持率S100达到89%。退火合金电极的HRD性能均得到不同程度的提高,其中950℃退火合金具有最佳的大电流放电性能(HRD900=83.4%)。氢在合金中的扩散是影响其高倍率放电性能的控制因素。展开更多
通过粉末冶金烧结方法制备A2B7型含镁La_(1.9-x)Y_(x)Mg_(0.1)Ni_(6.48)Mn_(0.32)Al_(0.2)(x=0~1.8)和无镁La_(0.8)Y_(1.2)Ni_(6.48)Mn_(0.32)Al_(0.2)合金,研究了掺杂Mg条件下Y元素对合金物相组成、晶体结构和电化学性能的影响规律和...通过粉末冶金烧结方法制备A2B7型含镁La_(1.9-x)Y_(x)Mg_(0.1)Ni_(6.48)Mn_(0.32)Al_(0.2)(x=0~1.8)和无镁La_(0.8)Y_(1.2)Ni_(6.48)Mn_(0.32)Al_(0.2)合金,研究了掺杂Mg条件下Y元素对合金物相组成、晶体结构和电化学性能的影响规律和协同作用。结果表明,适量增加Y含量有助于含Mg合金形成2H-Ce_(2)Ni_(7)型相单相组织,Mg与Y原子优先占据2H-Ce_(2)Ni_(7)型主相中的[A_(2)B_(4)]结构单元,随Y含量x增加,2H-Ce_(2)Ni_(7)型主相晶胞参数a,c,V_(cell)及[A_(2)B_(4)]与[AB_(5)]单元结构的体积差ΔV_(d)均逐渐减小,但无镁及含镁x=1.8合金的2H-Ce_(2)Ni_(7)型主相具有相对较高的V_(cell)和ΔV_(d)值。合金的放氢PCT曲线特征和电化学性能与掺Mg,Y含量及ΔV_(d)关系密切,含镁合金的电化学性能优于无镁合金,其中含镁x=1.0~1.2合金具有较小的ΔV_(d)和最佳的电化学性能,该电极放电容量达到最大值375 m Ah·g^(-1),经100周充放电循环后的容量保持率S100为91%,放电电流密度为900 mA·g^(-1)时的高倍率放电性能HRD_(900)为80%。通过掺Mg和优化Y含量可明显改善La-Y-Ni系A_(2)B_(7)型合金的电化学性能。展开更多
采用真空感应熔炼法,浇铸于中频感应炉的旋转铜辊,快淬制备LaY_(2)Ni_(10-x)Mn_(0.5)Cu_(x)(x=0,0.2,0.4,0.6)储氢合金薄带,在Ar气氛下1248 K热处理32 h,研究Cu元素部分替代Ni对合金微观结构和电化学性能的影响。研究表明:LaY_(2)Ni_(10...采用真空感应熔炼法,浇铸于中频感应炉的旋转铜辊,快淬制备LaY_(2)Ni_(10-x)Mn_(0.5)Cu_(x)(x=0,0.2,0.4,0.6)储氢合金薄带,在Ar气氛下1248 K热处理32 h,研究Cu元素部分替代Ni对合金微观结构和电化学性能的影响。研究表明:LaY_(2)Ni_(10-x)Mn_(0.5)Cu_(x)由Ce_(2)Ni_(7)和PuNi_(3)相两相组成,其中x=0.6时,合金中Ce_(2)Ni_(7)相的相丰度最大为70.53%。由于电负性的影响,储氢合金LaY_(2)Ni_(10-x)Mn_(0.5)Cu_(x)的晶胞体积随着Cu的加入,呈现异常减小后开始逐渐增加的趋势。电化学结果表明,适量Cu元素的加入可以提高合金的电化学放电能力,x=0.2时,电化学容量最大容量0.2C_(max)=388.6 m Ah·g^(-1),x=0.4时,合金的倍率性能达到最大,高倍率放电性能HRD_(1500)=66.94%。动力学研究表明,合金LaY_(2)Ni_(10-x)Mn_(0.5)Cu_(x)的倍率性能由表面电荷转移速率和氢原子扩散速率共同决定。当x=0.6时,合金电化学最大容量0.2C_(max)=375.2 m Ah·g^(-1),循环性能S_(100)=79.68%,高倍率放电性能HRD_(1500)=65.84%,具有最佳电化学综合性能。展开更多
文摘用XRD、SEM、EDS和电化学测试方法研究了退火温度对A_2B_7型La_(0.33)Y_(0.67)Ni_(3.25)Mn_(0.15)Al_(0.1)储氢合金微观组织和电化学性能的影响规律。结果表明,合金铸态组织由2H-Ce_2Ni_7、3R-Gd_2Co_7、CaCu_5和3R-Ce_5Co_(19)型相组成;随退火温度(850~950℃)升高,Ce_2Ni_7型主相丰度和晶胞体积逐渐增加,至950℃退火后,CaCu_5和Gd_2Co_7型相基本消失,主相Ce_2Ni_7型相丰度和晶胞体积均达到最大值;退火温度≥950℃时,Ce_2Ni_7型和Ce_5Co_(19)型相丰度分别又有所减少和增加。950℃退火合金具有较低的放氢平台压(1.92~8.70 k Pa)和较高的电化学放电容量(371 mAh/g),经100次充放电循环后其容量保持率S100达到89%。退火合金电极的HRD性能均得到不同程度的提高,其中950℃退火合金具有最佳的大电流放电性能(HRD900=83.4%)。氢在合金中的扩散是影响其高倍率放电性能的控制因素。
文摘通过粉末冶金烧结方法制备A2B7型含镁La_(1.9-x)Y_(x)Mg_(0.1)Ni_(6.48)Mn_(0.32)Al_(0.2)(x=0~1.8)和无镁La_(0.8)Y_(1.2)Ni_(6.48)Mn_(0.32)Al_(0.2)合金,研究了掺杂Mg条件下Y元素对合金物相组成、晶体结构和电化学性能的影响规律和协同作用。结果表明,适量增加Y含量有助于含Mg合金形成2H-Ce_(2)Ni_(7)型相单相组织,Mg与Y原子优先占据2H-Ce_(2)Ni_(7)型主相中的[A_(2)B_(4)]结构单元,随Y含量x增加,2H-Ce_(2)Ni_(7)型主相晶胞参数a,c,V_(cell)及[A_(2)B_(4)]与[AB_(5)]单元结构的体积差ΔV_(d)均逐渐减小,但无镁及含镁x=1.8合金的2H-Ce_(2)Ni_(7)型主相具有相对较高的V_(cell)和ΔV_(d)值。合金的放氢PCT曲线特征和电化学性能与掺Mg,Y含量及ΔV_(d)关系密切,含镁合金的电化学性能优于无镁合金,其中含镁x=1.0~1.2合金具有较小的ΔV_(d)和最佳的电化学性能,该电极放电容量达到最大值375 m Ah·g^(-1),经100周充放电循环后的容量保持率S100为91%,放电电流密度为900 mA·g^(-1)时的高倍率放电性能HRD_(900)为80%。通过掺Mg和优化Y含量可明显改善La-Y-Ni系A_(2)B_(7)型合金的电化学性能。
文摘采用真空感应熔炼法,浇铸于中频感应炉的旋转铜辊,快淬制备LaY_(2)Ni_(10-x)Mn_(0.5)Cu_(x)(x=0,0.2,0.4,0.6)储氢合金薄带,在Ar气氛下1248 K热处理32 h,研究Cu元素部分替代Ni对合金微观结构和电化学性能的影响。研究表明:LaY_(2)Ni_(10-x)Mn_(0.5)Cu_(x)由Ce_(2)Ni_(7)和PuNi_(3)相两相组成,其中x=0.6时,合金中Ce_(2)Ni_(7)相的相丰度最大为70.53%。由于电负性的影响,储氢合金LaY_(2)Ni_(10-x)Mn_(0.5)Cu_(x)的晶胞体积随着Cu的加入,呈现异常减小后开始逐渐增加的趋势。电化学结果表明,适量Cu元素的加入可以提高合金的电化学放电能力,x=0.2时,电化学容量最大容量0.2C_(max)=388.6 m Ah·g^(-1),x=0.4时,合金的倍率性能达到最大,高倍率放电性能HRD_(1500)=66.94%。动力学研究表明,合金LaY_(2)Ni_(10-x)Mn_(0.5)Cu_(x)的倍率性能由表面电荷转移速率和氢原子扩散速率共同决定。当x=0.6时,合金电化学最大容量0.2C_(max)=375.2 m Ah·g^(-1),循环性能S_(100)=79.68%,高倍率放电性能HRD_(1500)=65.84%,具有最佳电化学综合性能。