期刊文献+
共找到2,153篇文章
< 1 2 108 >
每页显示 20 50 100
Phase forming law and electrochemical properties of A2B7-type La-Y-Ni-based hydrogen storage alloys with different La/Y ratios 被引量:6
1
作者 Jiaxuan Li Xiangyang He +5 位作者 Wei Xiong Li Wang Baoquan Li Jin Li Shujuan Zhou Huizhong Yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第2期268-276,共9页
The effects of different proportions of La and Y elements in the A-side on the structure and properties of A_(2)B_(7)-type La-Y-Ni hydrogen storage alloys were investigated.The(La,Y)_(2)Ni_(7)hydrogen storage alloys w... The effects of different proportions of La and Y elements in the A-side on the structure and properties of A_(2)B_(7)-type La-Y-Ni hydrogen storage alloys were investigated.The(La,Y)_(2)Ni_(7)hydrogen storage alloys with different La/Y ratios were prepared by sintering the Y_(2)Ni_(4)precursor and different AB_(5)-type precursors at 1298 K for 5 h and subsequently annealed for 20 h at 1248 K.All the alloys only contain Ce_(2)Ni_(7)(2H-type)and Gd_(2)Co_(7)(3R-type)phases with different mass ratios.As the La/Y ratio decreases,the cell volume of the two phases declines and the corresponding plateau pressure gradually increases.As the proportion of Y in the alloy increases,the hydrogen storage capacity increases gradually from 1.309 wt%(La/Y=1/1)to 1.713 wt%(La/Y=1/5)and the high-rate discharge(HRD1500)ability of the alloy electrodes increases gradually from 62.7%(La/Y=1/1)to 88.6%(La/Y=1/5).The hydrogen diffusion rate in the bulk of the alloy is the controlling step of hydriding/dehydriding kinetics.The Y ele ment can effectively inhibit the hydrogen-induced amorphous(HIA)of La-Y-Ni alloys,but the poor stability of the Y element in alkaline KOH aqueous solution leads to a decrease in the electrochemical cyclic stability with increasing Y content. 展开更多
关键词 La-Y-Ni hydrogen storage alloy A_(2)B_(7)-type structure La/Y ratio hydrogenation characteristics Rare earths
原文传递
Synergy of inside doped metals–Outside coated graphene to enhance hydrogen storage in magnesium-based alloys
2
作者 Kun Zhang Yu Chang +7 位作者 Jingjing Lei Jing Chen Tingzhi Si Xiaoli Ding Ping Cui Hai-Wen Li Qingan Zhang Yongtao Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2462-2471,共10页
Grain growth of magnesium(Mg)and its hydride is one of the main reasons for kinetic and capacity degradation during the hydrogen absorption and desorption cycles.To solve this problem,herein we propose a novel method ... Grain growth of magnesium(Mg)and its hydride is one of the main reasons for kinetic and capacity degradation during the hydrogen absorption and desorption cycles.To solve this problem,herein we propose a novel method involving synergistic effect of inside embedded metals and outside coated graphene to limit the growth of Mg and its hydride grains.The graphene coated Mg-Y-Al alloys were selected as a model system for demonstrating this positive effect where the Mg_(91)Y_(3)Al_(6)alloy was first prepared by rapidly solidified method and then high-pressure milled with 5 wt%graphene upon 5 MPa hydrogen gas for obtaining in-situ formed YAl_(2)and YH_(3)embedded in the MgH_(2)matrix with graphene shell(denoted as MgH_(2)-Y-Al@GR).In comparison to pure MgH_(2),the obtained MgH_(2)-Y-Al@GR composites deliver much better kinetics and more stable cyclic performance.For instance,the MgH_(2)-Y-Al@GR can release about 6.1 wt%H_(2)within 30 min at 300℃ but pure MgH_(2)only desorbs∼1.5 wt%H_(2).The activation energy for desorption of MgH_(2)-Y-Al@GR samples is calculated to be 75.3±9.1 kJ/mol that is much lower than approximately 160 kJ/mol for pure MgH_(2).Moreover,its capacity retention is promoted from∼57%of pure MgH_(2)to∼84%after 50th cycles without obvious particle agglomeration and grain growth.The synergistic effect of outside graphene coating with inside embedded metals which could provide a huge number of active sites for catalysis as well as inhibit the grain growth of Mg and its hydride is believed to be responsible for these. 展开更多
关键词 Energy hydrogen storage Mg alloys Synergy effect
下载PDF
Key technology and application of AB_(2) hydrogen storage alloy in fuel cell hydrogen supply system
3
作者 Ming Yao Jianguang Yuan +3 位作者 Bao Zhang Youhua Yan Shaoxiong Zhou Ying Wu 《Materials Reports(Energy)》 EI 2024年第1期113-122,共10页
At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages... At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages of low hydrogen storage capacity and poor kinetics of hydrogen storage materials,our primary focus is to achieve smooth hydrogen ab-/desorption over a wide temperature range to meet the requirements of fuel cells and their integrated power generation systems.In this paper,the Ti_(0.9)Zr_(0.1)Mn_(1.45)V_(0.4)Fe_(0.15) hydrogen storage alloy was successfully prepared by arc melting.The maximum hydrogen storage capacity reaches 1.89 wt% at 318 K.The alloy has the capability to absorb 90% of hydrogen storage capacity within 50 s at 7 MPa and release 90% of hydrogen within 220 s.Comsol Multiphysics 6.0 software was used to simulate the hydrogen ab-/desorption processes of the tank.The flow rate of cooling water during hydrogen absorption varied in a gradient of(0.02 t x)m s^(-1)(x=0,0.02,0.04,0.06,0.08,0.1,0.12).Cooling water flow rate is positively correlated with the hydrogen absorption rate but negatively correlated with the cost.When the cooling rate is 0.06 m s^(-1),both simulation and experimentation have shown that the hydrogen storage tank is capable of steady hydrogen desorption for over 6 h at a flow rate of 2 L min^(-1).Based on the above conclusions,we have successfully developed a hydrogen-assisted two-wheeler with a range of 80 km and achieved regional demonstration operations in Changzhou and Shaoguan.This paper highlights the achievements of our team in the technological development of fuel cell power generation systems using solid hydrogen storage materials as hydrogen storage carriers and their application in twowheelers in recent years. 展开更多
关键词 AB_(2)hydrogen storage alloy hydrogen storage tanks Simulation hydrogen-electric coupling system Power-assisted two-wheelers
下载PDF
Comparative study on the hydrogen storage performance of as-milled MgRENi rapid quenched alloy catalyzed by metal sulfides
4
作者 Xiaoping Dong Zhaoqing Zhang +3 位作者 Liying Yang Shenghai Xin Dandan Su Zhiyuan Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2010-2023,共14页
The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehy... The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide. 展开更多
关键词 Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy COS CoS_(2)and MoS_(2)sulfide MILLING Activation energy hydrogen storage dynamics
下载PDF
Properties of Ti-Based Hydrogen Storage Alloy
5
作者 Rui Xu Tao Cheng +2 位作者 Chaoyu Li Xue Yang Junfeng Rong 《Journal of Power and Energy Engineering》 2024年第3期99-114,共16页
An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are c... An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are considered to be suitable for practical applications. In this paper, we review the latest research on Ti-based hydrogen storage alloys. Firstly, the machine learning and density functional theory are introduced to provide theoretical guidance for the optimization of Ti-based hydrogen storage alloys. Then, in order to improve the hydrogen storage performance, we briefly introduce the research of AB type and AB2 type Ti-based alloys, focusing on doping elements and adaptive after treatment. Finally, suggestions for the future research and development of Ti-based hydrogen storage alloys are proposed. . 展开更多
关键词 Renewable Energy hydrogen storage Ti-Based alloy Machine Learning
下载PDF
A review of classical hydrogen isotopes storage materials
6
作者 Yang Liu Zhiyi Yang +6 位作者 Panpan Zhou Xuezhang Xiao Jiacheng Qi Jiapeng Bi Xu Huang Huaqin Kou Lixin Chen 《Materials Reports(Energy)》 EI 2024年第1期23-42,共20页
Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactiv... Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactive tritium.Commonly used HSAs in the hydrogen isotopes field are Zr2M(M=Co,Ni,Fe)alloys,metallic Pd,depleted U,and ZrCo alloy.Specifically,Zr2M(M=Co,Ni,Fe)alloys are considered promising tritium-getter materials,and metallic Pd is utilized to separate and purify hydrogen isotopes.Furthermore,depleted U and ZrCo alloy are well suited for storing and delivering hydrogen isotopes.Notably,all the aforementioned HSAs need to modulate their hydrogen storage properties for complex operating conditions.In this review,we present a comprehensive overview of the reported modification methods applied to the above alloys.Alloying is an effective amelioration method that mainly modulates the properties of HSAs by altering their local geometrical/electronic structures.Besides,microstructural modifications such as nano-sizing and nanopores have been used to increase the specific surface area and active sites of metallic Pd and ZrCo alloys for enhancing de-/hydrogenation kinetics.The combination of metallic Pd with support materials can significantly reduce the cost and enhance the pulverization resistance.Moreover,the poisoning resistance of ZrCo alloy is improved by constructing active surfaces with selective permeability.Overall,the review is constructive for better understanding the properties and mechanisms of hydrogen isotope storage alloys and provides effective guidance for future modification research. 展开更多
关键词 hydrogen isotopes storage alloys alloyING Microstructural modification Surface modification Composite materials
下载PDF
A novel method towards improving the hydrogen storage properties of hypoeutectic Mg-Ni alloy via ultrasonic treatment 被引量:2
7
作者 Xin Ding Ruirun Chen +4 位作者 Xiaoyu Chen Hongze Fang Qi Wang Yanqing Su Jingjie Guo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期903-915,共13页
Ultrasonic treatment has great contributions on modifying the morphology,dimension and distribution of constituent phases during solidification,which serve as dominate factors influencing the hydrogen storage performa... Ultrasonic treatment has great contributions on modifying the morphology,dimension and distribution of constituent phases during solidification,which serve as dominate factors influencing the hydrogen storage performance of Mg-based alloys.In this research,ultrasonic treatment is utilized as a novel method to enhance the de-/hydriding properties of Mg-2Ni(at.%)alloy.Due to ultrasonic treatment,the microstructure of as-cast alloy is significantly refined and homogenized.Ascribing to the increased eutectic boundaries and shortened distance insideα-Mg for hydrogen atoms diffusion,the hydrogen uptake capacities and isothermal de-/hydriding rates improve effectively,especially at lower temperature.The peak desorption temperature reduces from 392.99°C to 345.56°C,and the dehydriding activation energy decreases from 101.93 k J mol^(-1)to 88.65 k J mol^(-1).Weakened hysteresis of plateau pressures and slightly optimized thermodynamics are determined from the pressure-composition isotherms.Owing to the refined primary Mg,a larger amount of hydrogen with the higher hydriding proportion is absorbed in the first stage when hydrides nucleate in eutectic region and grow on primary Mg periphery subsequently before MgH2colonies impinging,resulting in the enhancement of hydrogenation rates and capacities. 展开更多
关键词 hydrogen storage Mg-Ni alloy Ultrasonic treatment Dehydriding kinetics
下载PDF
FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage 被引量:1
8
作者 Tao Zhong Haoyu Zhang +4 位作者 Mengchen Song Yiqun Jiang Danhong Shang Fuying Wu Liuting Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2270-2279,共10页
The catalytic effect of FeCoNiCrMo high entropy alloy nanosheets on the hydrogen storage performance of magnesium hydride(MgH_(2))was investigated for the first time in this paper.Experimental results demonstrated tha... The catalytic effect of FeCoNiCrMo high entropy alloy nanosheets on the hydrogen storage performance of magnesium hydride(MgH_(2))was investigated for the first time in this paper.Experimental results demonstrated that 9wt%FeCoNiCrMo doped MgH_(2)started to dehydrogenate at 200℃and discharged up to 5.89wt%hydrogen within 60 min at 325℃.The fully dehydrogenated composite could absorb3.23wt%hydrogen in 50 min at a temperature as low as 100℃.The calculated de/hydrogenation activation energy values decreased by44.21%/55.22%compared with MgH_(2),respectively.Moreover,the composite’s hydrogen capacity dropped only 0.28wt%after 20 cycles,demonstrating remarkable cycling stability.The microstructure analysis verified that the five elements,Fe,Co,Ni,Cr,and Mo,remained stable in the form of high entropy alloy during the cycling process,and synergistically serving as a catalytic union to boost the de/hydrogenation reactions of MgH_(2).Besides,the FeCoNiCrMo nanosheets had close contact with MgH_(2),providing numerous non-homogeneous activation sites and diffusion channels for the rapid transfer of hydrogen,thus obtaining a superior catalytic effect. 展开更多
关键词 hydrogen storage magnesium hydride high entropy alloy nano-sheets CATALYSIS
下载PDF
Combined “Gateway” and “Spillover” effects originated from a CeNi_(5) alloy catalyst for hydrogen storage of MgH_(2) 被引量:1
9
作者 Mengchen Song Runkai Xie +4 位作者 Liuting Zhang Xuan Wang Zhendong Yao Tao Wei Danhong Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期970-976,共7页
Efficient catalysts enable MgH2 with superior hydrogen storage performance.Herein,we successfully synthesized a catalyst composed of Ce and Ni (i.e.CeNi_(5) alloy) with splendid catalytic action for boosting the hydro... Efficient catalysts enable MgH2 with superior hydrogen storage performance.Herein,we successfully synthesized a catalyst composed of Ce and Ni (i.e.CeNi_(5) alloy) with splendid catalytic action for boosting the hydrogen storage property of magnesium hydride (MgH_(2))The MgH2–5wt%CeNi_(5) composite’s initial hydrogen release temperature was reduced to 174℃ and approximately 6.4wt%H_(2) was released at 275℃ within 10 min.Besides,the dehydrogenation enthalpy of MgH_(2) was slightly decreased by adding CeNi_(5).For hydrogenation,the fully dehydrogenated sample absorbed 4.8wt%H_(2) at a low temperature of 175℃.The hydrogenation apparent activation energy was decreased from(73.60±1.79) to (46.12±7.33) kJ/mol.Microstructure analysis revealed that Mg_(2)Ni/Mg_(2)NiH_(4) and CeH_(2.73) were formed during the process of hydrogen absorption and desorption,exerted combined“Gateway”and“Spillover”effects to reduce the operating temperature and improve the hydrogen storage kinetics of MgH_(2).Our work provides an example of merging“Gateway”and“Spillover”effects in one catalyst and may shed light on designing novel highly-effective catalysts for MgH_(2) in near future. 展开更多
关键词 hydrogen storage magnesium hydride cerium–nickel alloys CATALYSIS
下载PDF
Enhanced hydrogen storage kinetics of nanocrystalline and amorphous Mg_2N-type alloy by substituting Ni with Co 被引量:7
10
作者 张羊换 宋春红 +3 位作者 任慧平 李志刚 胡锋 赵栋梁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2002-2009,共8页
In order to improve the hydrogen storage kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted with element Co. The Mg2Ni-type Mg2Ni1-xCox (x=0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by m... In order to improve the hydrogen storage kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted with element Co. The Mg2Ni-type Mg2Ni1-xCox (x=0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt-spinning technique. The structures of the as-spun alloys were characterized by XRD and TEM. The gaseous and electrochemical hydrogen storage kinetics of the alloys was measured. The results show that the substitution of Co for Ni notably enhances the glass forming ability of the Mg2Ni-type alloy. The amorphization degree of the alloys visibly increases with rising of Co content. Furthermore, the substitution of Co for Ni significantly improves the hydrogen storage kinetics of the alloys. With an increase in the amount of Co substitution from 0 to 0.4, the hydrogen absorption saturation ratio of the as-spun (15 m/s) alloy increases from 81.2% to 84.9%, the hydrogen desorption ratio from 17.60% to 64.79%, the hydrogen diffusion coefficient increases from 1.07×10-11 to 2.79×10-11 cm2/s and the limiting current density increases from 46.7 to 191.7 mA/g, respectively. 展开更多
关键词 Mg2Ni-type alloy substituting Ni with Co melt spinning hydrogen storage kinetics
下载PDF
Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg_2Ni-type alloys prepared by melt-spinning 被引量:4
11
作者 张羊换 吕科 +3 位作者 赵栋梁 郭世海 祁焱 王新林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期502-511,共10页
The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) were synthesized by melt-spinning technique. The spun alloy ribbons with a continuous length, a ... The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) were synthesized by melt-spinning technique. The spun alloy ribbons with a continuous length, a thickness of about 30 μm and a width of about 25 mm are obtained. The structures of the as-spun alloy ribbons were characterized by XRD and HRTEM. The electrochemical hydrogen storage characteristics of the as-spun alloy ribbons were measured by an automatic galvanostatic system. The electrochemical impedance spectrums (EIS) were plotted by an electrochemical workstation. The hydrogen diffusion coefficients (D) in the alloys were calculated by virtue of potential-step measurement. The results show that all the as-spun (x=0) alloys hold a typical nanocrystalline structure, whereas the as-spun (x=0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni facilitates the glass formation in the Mg2Ni-type alloy. The substitution of Mn for Ni significantly improves the electrochemical hydrogen storage performances of the alloys, involving the discharge capacity and the electrochemical cycle stability. With an increase in the amount of Mn substitution from 0 to 0.4, the discharge capacity of the as-spun (20 m/s) alloy increases from 96.5 to 265.3 mA·h/g, and its capacity retaining rate (S20) at the 20th cycle increases from 31.3% to 70.2%. Furthermore, the high rate dischargeability (HRD), electrochemical impedance spectrum and potential-step measurements all indicate that the electrochemical kinetics of the alloy electrodes first increases then decreases with raising the amount of Mn substitution. 展开更多
关键词 Mg2Ni-type alloy electrochemical hydrogen storage MELT-SPINNING substituting Ni with Mn
下载PDF
Phase structure and electrochemical properties of La_(0.7)Ce_(0.3)Ni_(3.75)Mn_(0.35)Al_(0.15)Cu_(0.75-x)Fe_x hydrogen storage alloys 被引量:2
12
作者 刘宝忠 李安铭 +2 位作者 范燕平 胡梦娟 张宝庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2730-2735,共6页
La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were inves... La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance. 展开更多
关键词 hydrogen storage alloy AB5-type hydrogen storage alloys phase structures electrochemical property KINETICS Ni-MH battery LaNi5 phase
下载PDF
Electrochemical hydrogen storage characteristics of as-cast and annealed La_(0.8-x)Nd_xMg_(0.2)Ni_(3.15)Co_(0.2)Al_(0.1)Si_(0.05)(x=0-0.4)alloys 被引量:3
13
作者 张羊换 候忠辉 +3 位作者 李保卫 任慧平 蔡颖 赵栋梁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1403-1412,共10页
The La-Mg-Ni-based A2B7-type La0.8-xNdxMg0.2Ni3.15Co0.2Al0.15 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were prepared by casting and annealing. The influences of partial substitution of Nd for La on the structure a... The La-Mg-Ni-based A2B7-type La0.8-xNdxMg0.2Ni3.15Co0.2Al0.15 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were prepared by casting and annealing. The influences of partial substitution of Nd for La on the structure and electrochemical performance of the as-cast and annealed alloys were investigated. It was found that the experimental alloys consist of two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure, as well as some residual phase LaNi3 and NdNi5. The discharge capacity and high rate discharge ability (HRD) of the as-cast and annealed alloys first increase and then decrease with Nd content growing. The as-cast and annealed alloys (x=0.3) yield the largest discharge capacities of 380.3 and 384.3 mA·h/g, respectively. The electrochemical cycle stability of the as-cast and annealed alloys markedly grows with Nd content rising. As the Nd content increase from 0 to 0.4. The capacity retaining rate (S100) at the 100th charging and discharging cycle increases from 64.98% to 85.17% for the as-cast alloy, and from 76.60% to 96.84% for the as-annealed alloy. 展开更多
关键词 Ni-MH battery hydrogen storage A2B7-type electrode alloy ND LA SUBSTITUTION electrochemical characteristics
下载PDF
Preparation of ZrMn_2 hydrogen storage alloy by electro-deoxidation in molten calcium chloride 被引量:2
14
作者 戴磊 王硕 +2 位作者 王岭 余瑶 邵光杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2883-2889,共7页
ZrMn2 alloy was electro-synthesized directly from cathode pellets compacted with powdered mixture of MnO2 and ZrO2 in molten calcium chloride. Sintering temperature, cell voltage and electrolysis time were the dominan... ZrMn2 alloy was electro-synthesized directly from cathode pellets compacted with powdered mixture of MnO2 and ZrO2 in molten calcium chloride. Sintering temperature, cell voltage and electrolysis time were the dominant factors that affected the characteristics of the final product. The results confirmed the formation of pure ZrMn2 alloy through the electro-deoxidation of the mixed oxide pellets at 3.1 V for 12 h in 900 °C CaCl2 melt. The X-ray diffraction(XRD) and cyclic voltammetry analysis suggested that the electro-deoxidation proceeded from the reduction of manganese oxides to Mn, followed by ZrO2 or CaZrO3 reduction on the pre-formed Mn to ZrMn2 alloy. The cyclic voltammetry measurements using powder microelectrode showed that the prepared ZrMn2 alloy has a good electrochemical hydrogen storage property. 展开更多
关键词 ELECTRO-DEOXIDATION ZrMn2 alloy CaCl2 melt OXIDES hydrogen storage property
下载PDF
Phase structure and electrochemical properties of La_(1.7+x)Mg_(1.3-x)(NiCoMn)_(9.3)(x=0-0.4) hydrogen storage alloys 被引量:2
15
作者 魏范松 黎莉 +2 位作者 项宏福 李惠 魏范娜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1995-1999,共5页
The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni... The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni9 phase (PuNi3 structure) and La4MgNi19 phases (Ce5Co19+Pr5Co19 structure, namely A5B19 type). With the increase of the x value, the LaMg2Ni9 phase fades away and La4MgNi19 phases appear, while the abundance of LaNi5 phase firstly increases and then decreases. At the same time, the cell volume of LaNi5 phase and LaMg2Ni9 phase decreases. The electrochemical measurement shows that alloy electrodes could be activated in 4-5 cycles, and with the increase of the x value, the maximum discharge capacity gradually increases from 330.9 mA-h/g (x=0) to 366.8 mA-h/g (x=0.4), but the high-rate dischargeability (HRD) and cyclic stability (S) decrease somewhat (x=0.4, HRD600=82.32%, S100=73.8%). It is found that the HRD is mainly controlled by the electrocatalytic activity on the alloy electrode surface, and the decline of cyclic stability is due to the appearance of A5B19 type phase with larger hydrogen storage capacity, which leads to larger volume expansion and more intercrystalline stress and then easier pulverization during charging/discharging. 展开更多
关键词 hydrogen storage alloy A5B19 type crystal structure electrochemical property La-Mg-Ni system
下载PDF
Structure and hydrogen storage performance of LaNi_(4.25)Al_(0.75) alloy 被引量:2
16
作者 曹大力 陈德敏 +3 位作者 刘艺 马雷 吕曼祺 杨柯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期517-522,共6页
Hydrogen storage properties of LaN4.25Al0.75 alloy were experimentally investigated by XRD, PC isotherm curves, hydrogen absorption kinetics curves, XPS and its particle diameter. The structure of unit cell of LaNi4.2... Hydrogen storage properties of LaN4.25Al0.75 alloy were experimentally investigated by XRD, PC isotherm curves, hydrogen absorption kinetics curves, XPS and its particle diameter. The structure of unit cell of LaNi4.25Al0.75 alloy was deduced. The relationship between its structure and hydrogen storage performance of LaNi4.25Al0.75 alloy was analyzed. The results show that LaNi4.25Al0.75 alloy has rapid hydrogen absorption rate and good resistance to combustibility. It is also found that the function of the hydrogen absorption plateau pressure and temperature is ln peq=-4 820/T+12.46, and the hydrogen absorption rate of the alloy decreases with increasing the temperature. 展开更多
关键词 hydrogen storage alloy LaNi4.25Al0.75 microstructure resistance to combustibility
下载PDF
Preparation of LaMgNi_(4-x)Co_x alloys and hydrogen storage properties 被引量:3
17
作者 谭剑波 曾小勤 +2 位作者 邹建新 吴晓梅 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2307-2311,共5页
The LaMgNi4xCox (x=0, 0.3, 0.5) compounds were prepared by the method of levitation melting and a subsequent heat treatment at 1073 K for 10 h. XRD analysis shows that the obtained LaMgNia-xCox alloys consist of a s... The LaMgNi4xCox (x=0, 0.3, 0.5) compounds were prepared by the method of levitation melting and a subsequent heat treatment at 1073 K for 10 h. XRD analysis shows that the obtained LaMgNia-xCox alloys consist of a single phase with the structure of cubic SnMgCu4 (AuBe5 type). The hydrogen absorption/desorption properties of LaMgNi4 were investigated by PCI measurement at various temperatures (T=373, 398, 423 K) and the results show that the maximum absorbed hydrogen capacity reaches 1.45% (5.79H/M) under a hydrogen pressure of 4.3 MPa at 373 K. The XRD patterns during absorbing procedure at 373 K indicate the phase structure changing from cubic (a-LaMgNi4) to orthorhombic (fl-LaMgNiaH3.41) and after hydrogenation finally back to cubic (y-LaMgNiaH4.87), and a partial desorption was also observed under this condition. With increasing temperature, a slight decrease of the absorbed hydrogen content was observed and the number of plateaus reduces from two to one, but the hydrogen absorption kinetics improves. The electrochemical properties of the LaMgNiaxCox were measured by simulated battery test, which shows that the discharge capacity of the alloys significantly improves with the increase of Co content. 展开更多
关键词 hydrogen storage alloy electrochemical properties LaMgNi4-xCox
下载PDF
Electrochemical performances of AB_5-type hydrogen storage alloy modified with Co_3O_4 被引量:3
18
作者 张青青 苏耿 +1 位作者 李傲生 刘开宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1428-1434,共7页
Anodic electrodes with the mixture of hydrogen storage alloys and different contents of Co3O4(2%,4%,6% and 8%,mass fraction) powders were made.The effects of Co3O4 on the electrochemical performance of the alloy ele... Anodic electrodes with the mixture of hydrogen storage alloys and different contents of Co3O4(2%,4%,6% and 8%,mass fraction) powders were made.The effects of Co3O4 on the electrochemical performance of the alloy electrodes were studied.The constant charge-discharge tests show that the discharge capacity of alloy electrodes with Co3O4 significantly increases,and the maximum discharge capacities of electrodes with 2%,4%,6% and 8% Co3O4 are higher than the electrode with no Co3O4 by 0.83%,4.86%,7.18% and 9.21%,accordingly.Linear polarization(LP) and electrochemical impedance spectroscopy(EIS) tests suggest that charge-transfer resistance decreases by the addition of Co3O4.Cyclic voltammogram(CV),scanning electron microscopy(SEM) and energy dispersive spectrum(EDS) tests indicate that Co3O4 can partly dissolve and experience a reversible oxidation-reduction process of Co to Co(OH)2,leading to the improvement in the electrochemical performance of hydrogen storage alloy. 展开更多
关键词 CO3O4 hydrogen storage alloy capacity electrochemical performance
下载PDF
Effects of annealing treatment on the microstructure and electrochemical properties of low-Co hydrogen storage alloys containing Cu and Fe 被引量:10
19
作者 YANG Suxia LIU Zhiping +2 位作者 HAN Shumin ZHANG Wei SONG Jianzheng 《Rare Metals》 SCIE EI CAS CSCD 2011年第5期464-469,共6页
The effects of annealing treatment on the microstructure and electrochemical properties of low-Co LaNi 3.55 Mn 0.35 Co 0.20 Al 0.20 Cu 0.75 Fe 0.10 hydrogen storage alloys were investigated. X-ray diffraction (XRD) ... The effects of annealing treatment on the microstructure and electrochemical properties of low-Co LaNi 3.55 Mn 0.35 Co 0.20 Al 0.20 Cu 0.75 Fe 0.10 hydrogen storage alloys were investigated. X-ray diffraction (XRD) analysis indicated that annealing treatment remarkably reduced the lattice strain and defects, and increased the unit-cell volume. The optical microscope analysis showed that the as-cast alloy had a crass dendrite microstructure with noticeable composition segregation, which gradually disappeared with increasing annealing temperature, and the micro-structure changed to an equiaxed structure after annealing the alloy at 1233 K. The electrochemical tests indicated that the annealed alloys demonstrated much better cycling stability compared with the as-cast one. The capacity retention at the 100th cycle increased from 90.0% (as-cast) to 94.7% (1273 K). The annealing treatment also improved the discharge capacity. However, the high rate dischargeability (HRD) value of the annealed alloy slightly dropped, which was believed to be ascribed to the decreased exchange current density and the hydrogen diffusion coefficient in alloy bulk. 展开更多
关键词 hydrogen storage alloys ANNEALING phase structure MICROSTRUCTURE electrochemical properties
下载PDF
Microstructural evolution of melt-spun Mg-10Ni-2Mm hydrogen storage alloy
20
作者 武英 邢娜 +4 位作者 卢志超 韩伟 周少雄 J.K.SOLBERG V.A.YARTYS 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期121-126,共6页
The microstructural evolution of a Mg-10Ni-2Mm(molar fraction,%)(Mm=Ce,La-rich mischmetal) hydrogen storage alloys applied with various solidification rates was studied.The results show that the grain size of melt... The microstructural evolution of a Mg-10Ni-2Mm(molar fraction,%)(Mm=Ce,La-rich mischmetal) hydrogen storage alloys applied with various solidification rates was studied.The results show that the grain size of melt-spun ribbon is remarkably reduced by increasing the solidification rate.The microcrystalline,nanocrystalline and amorphous microstructures are obtained by applying the surface velocities of the graphite wheel of 3.1,10.5 and 20.9 m/s,respectively.By applying the surface velocity of the graphite wheel of 3.1 m/s,the melt-spun specimen obtains full crystalline with a considerable amount of coarse microcrystalline Mg and Mg2Ni except for some Mm-rich particles.The amount of nanocrystalline phases significantly increases with increasing the surface velocity of the wheel to 10.5 m/s,and the microstructure is composed of a large amount of nanocrystalline phases of Mg and Mg2Ni particles.A mixed microstructure containing amorphous and nanocrystalline phases is obtained at a surface velocity of the wheel of 20.9 m/s.The optimal microstructure with a considerable amount of nanocrystalline Mg and Mg2Ni in an amorphous matrix is expected to have the maximum hydrogen absorption capacity and excellent hydrogenation kinetics. 展开更多
关键词 hydrogen storage materials Mg-based alloys RAPID-SOLIDIFICATION MICROSTRUCTURE transmission electron microscopy
下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部