Lanthanum doped bismuth layer structured ferroelectrics (BLSFs) Ca1 - x LaxBi4 (Ti0.9W0. 1 )4O15 ( x = 0, 0.2, 0.3, 0.4, 0.6) ceramics were prepared by solid-state reaction method. X-ray diffraction (XRD) patt...Lanthanum doped bismuth layer structured ferroelectrics (BLSFs) Ca1 - x LaxBi4 (Ti0.9W0. 1 )4O15 ( x = 0, 0.2, 0.3, 0.4, 0.6) ceramics were prepared by solid-state reaction method. X-ray diffraction (XRD) patterns showed that single phase was formed when x = 0 - 0.6. The effects of La^3+ doping on dielectric, piezoelectric and ferroelectric properties of Ca1-xLaxBi4(Ti0.9W0.1)4O15 ceramics were studied. Ca0.7La0.3Bi4(Ti0.9W0.1)4O15 ceramic had optimal properties, its dielectric constant was 166.85, dielectric loss was 0.0063, piezoelectric strain constant was 11 pc·N^-1, remanent polarization was 18.1μC·cm^-2 and coercive field was 118 kV·cm^-1. SEM micrographs showed that the grains of CaBi4Ti4O15-based ceramics were plate-like. The results of energy spectrum analysis (EDS) showed that La^3+ incorporation could increase Bi/Ca ratio.展开更多
La-doped and undoped xBiIn03-(1 - x)PbTi03 (BI-PT) thin films are deposited on (101)SrRuO3/(lOO)Pt/(lO0) MgO substrates by the rf-magnetron sputtering method. The structures of the films are characterized by...La-doped and undoped xBiIn03-(1 - x)PbTi03 (BI-PT) thin films are deposited on (101)SrRuO3/(lOO)Pt/(lO0) MgO substrates by the rf-magnetron sputtering method. The structures of the films are characterized by XRD and SEM, and the results indicate that the thin films are grown with mainly (100) oriented and columnar structures. The ferroelectricity and piezoelectricity of the BI-PT films are also measured, and the measured results illustrate that both performances are effectively improved by the La-doping with suitable concentrations. These results will open up wide potential applications of the films in electronic devices.展开更多
A series of polycrystalline La-doped Li-Ni ferrites LiNi_ 0.5La_xFe_ 2-xO_4 (where x=0.0~0.08 in steps of 0.02) were prepared by thermolysising of oxalate precursors which were obtained by rheological phase reaction....A series of polycrystalline La-doped Li-Ni ferrites LiNi_ 0.5La_xFe_ 2-xO_4 (where x=0.0~0.08 in steps of 0.02) were prepared by thermolysising of oxalate precursors which were obtained by rheological phase reaction. Results were observed by powder X-ray diffractometer (XRD) on samples indicate that all doped ferrites have the major spinel phase, and the single spinel phase is obtained in La content x≤0.04. The lattice parameter increases in the range of x=0~0.04, then decreases up to x=0.08. The hysteresis loops show that the value of saturation magnetization is less than that of the pure Li-Ni ferrite except for x=0.04, while the coercivity increases with the La content.展开更多
In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared all...In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared alloys in Na Cl solutions have been investigated with the help of nonlinear and linear fitting by Avrami-Erofeev and Arrhenius equations.Combining the microstructure information before and after hydrolysis and thermodynamics fitting results,the hydrolysis H_(2) generation mechanism based on nucleation&growth has been elaborated.The final H_(2) generation capacities of 0La,5La,10La and 15 La alloys are 677,653,641 and 770 m L·g^(-1)H_(2) in 240 min at291 K,respectively.While,the final H_(2) generation capacities of HEBM 0La,5La,10La and 15 La alloys are 632,824,611 and 653 m L·g^(-1)H_(2) in 20 min at 291 K,respectively.The as-cast 15La alloy and HEMB 5La alloy present the best H_(2) production rates and final H_(2) production capacities,especially the HEBM 5La can rapidly achieve high H_(2) generation capacity(670 and 824 m L·g^(-1)H_(2) )at low temperature(291 K)within short time(5 and 20 min).The difference between the H_(2) generation capacities is mainly originated from the initial nucleation rate of Mg(OH)_(2) and the subsequent processes affected by the microstructures and phase compositions of the hydrolysis alloys.Relative low initial nucleation rate and fully growth of Mg(OH)_(2) nucleus are the premise of high H_(2) generation capacity due to the hydrolysis H_(2) generation process consisted by the nucleation,growth and contacting of Mg(OH)_(2) nucleus.To utilization H_(2) by designing solid state H_(2) generators using optimized Mg-based alloys is expected to be a feasible H_(2) generation strategy at the moment.展开更多
Copper nitride film (Cu3N) and La-doped copper nitride films (LaxCu3N) were prepared on glass substrates by reactive magnetron sputtering of a pure Cu and a pure La targets under N2 atmosphere. The results show th...Copper nitride film (Cu3N) and La-doped copper nitride films (LaxCu3N) were prepared on glass substrates by reactive magnetron sputtering of a pure Cu and a pure La targets under N2 atmosphere. The results show that La-free film was composed of Cu3N crystallites with anti-ReO3 structure with (111) texture. The formation of the LaxCu3N films is affected strongly by La, and the peak intensity of the preferred crystalline [111]-orientation decreases with increasing the concentration of La. High concentration of La may prevent the formation of the Cu3N from crystallization. Compared with the Cu3N films, the resistivity of the LaxCu3N films have been decreased.展开更多
Elemental doping is an effective strategy to enhance photocatalytic activity and extend the light absorption range of single-component photocatalysts.In this work,a series of La-doped CeO_(2) nanorods(La-CeO_(2)-x) wi...Elemental doping is an effective strategy to enhance photocatalytic activity and extend the light absorption range of single-component photocatalysts.In this work,a series of La-doped CeO_(2) nanorods(La-CeO_(2)-x) with La content of 1 wt%-15 wt% are synthesized by a simple hydrothermal method and further used as photocatalyst for sulfamerazine(SMR) degradation.The prepared La-CeO_(2)-x nanorods exhibit a great improvement in electron-hole pair migration and visible-light response due to the synergistic effect of abundant oxygen vacancies and heterogeneous elements(La).Consequently,La-CeO_(2)-x exhibited excellent visible-light photocatalytic performances and chemical stability for SMR degradation,the La-CeO_(2)-5 sample achieved the highest SMR degradation rate of 81%,which was 3.4 times higher than that of the original CeO_(2).Furthermore,three possible degradation pathways of SMR in La-CeO_(2) photocatalytic reactions were proposed by liquid chromatography-mass spectrometry technique.Finally,density functional theory calculations were carried out to provide an in-depth understanding of the structure-performance relationships.Considering its excellent properties and better photocatalytic performance,this study demonstrates that La doping in CeO_(2) is an effective way to increase oxygen vacancy and improve the photochemical properties of photocatalysts.展开更多
Tin dioxide(SnO2) and La-doped(1%,5%,10% in mass ratio) SnO2 samples were prepared via a hydrothermal method. The as-prepared powders were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM) ...Tin dioxide(SnO2) and La-doped(1%,5%,10% in mass ratio) SnO2 samples were prepared via a hydrothermal method. The as-prepared powders were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM) . Results showed that the particle size of SnO2 decreased gradually with the increase of the doped La element. When used as anode materials of Li ion battery,the La-doped samples exhibited better cycling performance than the pure SnO2,and the cycling performance of the La-doped samples got better and better with the increase of the doped La. The better electrochemical performance of the doped material could be attributed to the doping of La element,which not only enabled SnO2 powders to have a good dispersivity but also reduced their particle size.展开更多
La-doped Sr-hexaferrite(Sr(1-x)LaxFe(12)O(19))(x=0.05,0.10,0.15,0.20) nanopowders with particle size ranging from 80 to 110 nm were successfully synthesized by sol-gel auto-combustion. The phase formation te...La-doped Sr-hexaferrite(Sr(1-x)LaxFe(12)O(19))(x=0.05,0.10,0.15,0.20) nanopowders with particle size ranging from 80 to 110 nm were successfully synthesized by sol-gel auto-combustion. The phase formation temperature increases, while the particle size decreases as the Ladoping content goes up. The partial substitution of Sr^(2+) by La^(3+) results in the suppression effects on the growth-up of the crystallites and the enhancement of the electron hopping between Fe^(3+) with different valences, which leads to the improvement in the dielectric loss and magnetic loss.Therefore, both the microwave absorbing abilities and absorbing frequency ranges are tuned by La-doping. The synthesized Sr-hexaferrite nanopowders with doping element content of 0.10 demonstrate the fine broad microwave absorbing properties.展开更多
Three different series of lead-free ceramics,i.e.,(1-y)Bi1.03(1_x)LaxFeO_(3)-yBaTiO_(3)(y=0.27,x=0.00-0.12),(y=0.30,x=0.00-0.10),and(y=0.33,x=0.00-0.08)are prepared via a conventional solid-state reaction with water q...Three different series of lead-free ceramics,i.e.,(1-y)Bi1.03(1_x)LaxFeO_(3)-yBaTiO_(3)(y=0.27,x=0.00-0.12),(y=0.30,x=0.00-0.10),and(y=0.33,x=0.00-0.08)are prepared via a conventional solid-state reaction with water quenching.From X-ray diffraction and electrical property measurements,two morphotropic phase boundaries(MPBs)are discovered in all three ceramic systems.The first MPB(MPB-Ⅰ)appeared between rhombohedral and tetragonal phases,whereas the second MPB(MPB-Ⅱ)appeared between tetragonal and cubic-like phases.The highest direct piezoelectric coefficients(d_(33)=201,274,and 268 pC/N)are mainly attributed to the typical MPB-I of the rhombohedral and tetragonal phases.However,the highest converse piezoelectric coefficients(d_(33*)=490,500,and 570 pm/V with Curie temperature>330℃)are obtained for compositions near to the MPB-II.A significant enhancement in the dielectric constant at low temperature is associated with the local structural heterogeneity by La^(3+)doping,which serves as an origin for a high piezoelectric strain response.Based on the crystal structure as well as on the dielectric,ferroelectric,and piezoelectric properties,a phase diagram is constructed for La-doped BiFeO3-BaTiO3 ceramics.This phase diagram reveals the relationship between piezoelectric performance and crystal structure.展开更多
The La-dopping effect on the piezoelectricity in the K0.5Na0.5NbO3 (KNN) crystal with a tetragonal phase is investigated for the first time using the first-principle calculation based on density functional theory. T...The La-dopping effect on the piezoelectricity in the K0.5Na0.5NbO3 (KNN) crystal with a tetragonal phase is investigated for the first time using the first-principle calculation based on density functional theory. The full potentiallinearized augumented plane wave plus local orbitals (APW-LO) method and the supercell method are used in the calculation for the KNN crystal with and without the La doping. The results show that the piezoelectricity originates from the strong hybridization between the Nb atom and the O atom, and the substitution of the K or Na atom by the La impurity atom introduces the anisotropic relaxation and enhances the piezoelectricity at first and then restrains the hybridization of the Nb-O atoms when the La doping content further increases.展开更多
The alternation from bipolar to unipolar resistive switching is observed in perovskite La0.01Sr0.99TiO3 thin films. These two switching modes can be activated separately depending on the compliance current (Icomp) d...The alternation from bipolar to unipolar resistive switching is observed in perovskite La0.01Sr0.99TiO3 thin films. These two switching modes can be activated separately depending on the compliance current (Icomp) during the electroforming process: with a higher Icomp (5 mA) the unipolar resistance switching behavior is measured, while the bipolar resistance switching behavior is observed with a lower Icomp (1 mA). On the basis of I–V characteristics, the switching mechanisms for the URS and BRS modes are considered as being a change in the Schottky-like barrier height and/or width at the Pt/La-SrTiO3 interface and the formation and disruption of conduction filaments, respectively.展开更多
A series of BiFeO3 and lanthanum‐doped BiFeO3 photocatalysts were synthesized by a facile sol‐gel method using citric acid as complexing agent, and used to remove phenol in industrial wastewater under simulated sunl...A series of BiFeO3 and lanthanum‐doped BiFeO3 photocatalysts were synthesized by a facile sol‐gel method using citric acid as complexing agent, and used to remove phenol in industrial wastewater under simulated sunlight irradiation. The samples were characterized by X‐ray diffraction, energy dispersive spectroscopy, X‐ray photoelectron spectroscopy, UV‐Vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The introduction of La effectively suppressed the generation of an impurity phase. All the metals (La, Bi and Fe) are well distributed. Under simulated sunlight irradiation, the La‐doped BiFeO3 photocatalysts exhibited superior photocatalytic activity to pure BiFeO3. The 15%La‐doped BiFeO3 photocatalyst exhibited the best activity, with a degradation rate of 96%and COD removal rate of 81.53%after irradiation for 180 min, and it showed good recycling stability. The enhanced photocatalytic ability of 15% La‐doped BiFeO3 was attributed to the in‐crease of adsorbed surface hydroxyl groups, enhancement of visible light absorption and reduction of electron‐hole recombination. We confirmed that the primary active species was -OH by adding different scavengers during the photodegradation of phenol and proposed a reaction mechanism based on these experiments.展开更多
A series of layered LiNi0.8?xCo0.1Mn0.1LaxO2(x=0,0.01,0.03)cathode materials were synthesized by combining co-precipitation and high temperature solid state reaction to investigate the effect of La-doping on LiNi0.8Co...A series of layered LiNi0.8?xCo0.1Mn0.1LaxO2(x=0,0.01,0.03)cathode materials were synthesized by combining co-precipitation and high temperature solid state reaction to investigate the effect of La-doping on LiNi0.8Co0.1Mn0.1O2.A new phase La2Li0.5Co0.5O4was observed by XRD,and the content of the new phase could be determined by Retiveld refinement and calculation.The cycle stability of the material is obviously increased from74.3%to95.2%after La-doping,while the initial capacity exhibits a decline trend from202mA·h/g to192mA·h/g.The enhanced cycle stability comes from both of the decrease of impurity and the protection of newly formed La2Li0.5Co0.5O4,which prevents the electrolytic corrosion to the active material.The CV measurement confirms that La-doped material exhibits better reversibility compared with the pristine material.展开更多
Polycrystalline samples of Bi 1.5 Pb 0.5 Sr 2-x La x Co 2 O y (x = 0.1, 0.2, 0.3) with a layered structure were prepared by solid-state reaction method. All samples are p-type semiconductors. The thermoelectric prop...Polycrystalline samples of Bi 1.5 Pb 0.5 Sr 2-x La x Co 2 O y (x = 0.1, 0.2, 0.3) with a layered structure were prepared by solid-state reaction method. All samples are p-type semiconductors. The thermoelectric properties, namely, the electric resistivity (ρ), Seebeck coefficient (S), and power factor (S 2 /ρ) of the samples are dependent on chemical composition. The values of ρ, S, and S 2 /ρ increase with an increase in temperature for all samples. The substitution of Pb 2+ for Bi 3+ and La 3+ for Sr 2+ improves the thermoelectric properties of the Bi 2 Sr 2 Co 2 O y system owing to the simultaneous decrease of electric resistivity and increase of Seebeck coefficient. As a result, the optimal thermoelectric property has been obtained in Bi 1.5 Pb 0.5 Sr 1.7 La 0.3 Co 2 O y and the power factor can reach 2.1 × 10-4 W·m-1 K-2 at 998 K.展开更多
Lanthanum and nitrogen co-doped SrTiO3 was synthesized using polymerized complex method with Ti(OC3H7)4, SrCl2·6H2O and La(NO3)3·6H2O as starting materials followed by calcinations in NH3. Ethylene glycol an...Lanthanum and nitrogen co-doped SrTiO3 was synthesized using polymerized complex method with Ti(OC3H7)4, SrCl2·6H2O and La(NO3)3·6H2O as starting materials followed by calcinations in NH3. Ethylene glycol and anhydrous citric acid were used as the precursors of synthesis. The samples were characterized using XRD, TEM, DRS, BET, EDX and XPS. The cubic-perovskite type of La/N co-doped SrTiO3 nanoparticle could be successfully synthesized. The photocatalytic activity of SrTiO3 for DeNOx ability in visible light region (λ > 510 nm) could be improved by co-doping of La3+ and N3_. The high visible light photocatalytic activity of this substance was caused by a narrow band gap energy that enables to absorb visible light.展开更多
We report the discovery and characterization of a novel 112-type iron pnictide EuFeAs2, with La-doping induced superconductivity in a series of Eu1- xLaxFeAs2. The polycrystalline samples were synthesized through soli...We report the discovery and characterization of a novel 112-type iron pnictide EuFeAs2, with La-doping induced superconductivity in a series of Eu1- xLaxFeAs2. The polycrystalline samples were synthesized through solid state reaction method only within a very narrow temperature window around 1073 K. Small single crystals were also grown from a flux method with the size about 100μm. The crystal structure was identified by single crystal X-ray diffraction analysis as a monoclinic structure with space group of P2 1/m. From resistivity and magnetic susceptibility measurements, we found that the parent compound EuFeAs2 shows distinct anomalies probably due to the Fe2+ related antiferromagnetic/structural phase transition near 110K and the Eu2+ related antiferromagnetic phase transition near 40K. La-doping suppressed both phase transitions to lower temperatures and induced superconducting transitions with a Tc - 11 K for Eu0.85La0.15FeAs2.展开更多
Pure and La-doped TiO2 thin films were prepared on glass by sol-gel method using tetrabutyl titanate as Ti precursors. Their chemical composition, structure and properties were characterized by X-ray diffraction (XRD...Pure and La-doped TiO2 thin films were prepared on glass by sol-gel method using tetrabutyl titanate as Ti precursors. Their chemical composition, structure and properties were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-Visible spectrophotometer and optical contact angle measuring instrument, respectively. The results showed that the content of La was the key factor for hydrophilic and photocatalytic activity. LaTiO3 could be formed in La-doped TiO2 thin films, which caused the TiO2 lattice distortion and restrained the transition from anatase to rutile. By adding 0.3 wt.% La to the TiO2 thin films, the optimal hydrophilic character could be obtained and the contact angle was only 9.6~. La-doped TiO~ thin films could ex- pand the wavelength response range of TiO2, and thus increase the speed of the photocatalytic reaction. 92.02% of methylene blue was finally degraded when the concentration of La was 0.3 wt.%. The expressions of ln(CAo/CA) as functions of photocatalytic time were deduced which were well consistent with the experimental results.展开更多
The nano-crystalline La_(0.1)Bi_(0.9)FeO_3 compound was successfully synthesized by starch-based combustion method. The crystal structure and magnetic behavior were studied by temperature-dependent X-ray diffract...The nano-crystalline La_(0.1)Bi_(0.9)FeO_3 compound was successfully synthesized by starch-based combustion method. The crystal structure and magnetic behavior were studied by temperature-dependent X-ray diffraction(XRD), scanning electron microscopy(SEM), differential scanning calorimetry(DSC) and magnetic measurements. The La_(0.1)Bi_(0.9)FeO_3 compounds crystallized in a rhombohedrally distorted perovskite structure with space group R3 c. The substitution of La for Bi reduced the rhombohedral distortion. The structural phase transitions in La_(0.1)Bi_(0.9)FeO_3 driven by temperature showed that the extraordinary two-phase coexistence state of BiF eO 3 and LaF eO 3 was observed in a narrow temperature range of 630–700 oC. The magnetization of the La_(0.1)Bi_(0.9)FeO_3 sample was improved by heat treatment in the temperature range. When the heat treatment temperatures rose from 25 to 600 oC, the remanence(Mr) and coercivity(Hc) of the La_(0.1)Bi_(0.9)FeO_3 compound almost remained the same, and increased rapidly to 0.134 emu/g and 7.1 KOe on further increasing the heat treatment temperature to 650 oC.展开更多
To reduce the greenhouse effect caused by the surgery of nitrogen-oxides concentration in the atmosphere and develop a future energy carrier of renewables,it is very critical to develop more efficient,controllable,and...To reduce the greenhouse effect caused by the surgery of nitrogen-oxides concentration in the atmosphere and develop a future energy carrier of renewables,it is very critical to develop more efficient,controllable,and highly sensitive catalytic materials.In our work,we proposed that nitric oxide(NO),as a supplement to N_(2) for the synthesis of ammonia,which is equipped with a lower barrier.And the study highlighted the potential of CeO_(2)(111)nanosheets with La doping and oxygen vacancy(OV)as a high-performance,controllable material for NO capture at the site of Vo site,and separation the process of hydrogenation.We also reported that the E_(ads) of-1.12 eV with horizontal adsorption and the Bader charge of N increasing of 0.53|e|and O increasing of 0.17|e|at the most active site of reduction-OV predicted.It is worth noting thatΔG of NORR(NO reduction reaction)shows good performance(thermodynamically spontaneous reaction)to synthesize ammonia and water at room temperature in the theoretical calculation.展开更多
文摘Lanthanum doped bismuth layer structured ferroelectrics (BLSFs) Ca1 - x LaxBi4 (Ti0.9W0. 1 )4O15 ( x = 0, 0.2, 0.3, 0.4, 0.6) ceramics were prepared by solid-state reaction method. X-ray diffraction (XRD) patterns showed that single phase was formed when x = 0 - 0.6. The effects of La^3+ doping on dielectric, piezoelectric and ferroelectric properties of Ca1-xLaxBi4(Ti0.9W0.1)4O15 ceramics were studied. Ca0.7La0.3Bi4(Ti0.9W0.1)4O15 ceramic had optimal properties, its dielectric constant was 166.85, dielectric loss was 0.0063, piezoelectric strain constant was 11 pc·N^-1, remanent polarization was 18.1μC·cm^-2 and coercive field was 118 kV·cm^-1. SEM micrographs showed that the grains of CaBi4Ti4O15-based ceramics were plate-like. The results of energy spectrum analysis (EDS) showed that La^3+ incorporation could increase Bi/Ca ratio.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174142 and 11304160he National Basic Research Program of China under Grant No 2012CB921504the Special Fund for Public Interest of China under Grant No201510068
文摘La-doped and undoped xBiIn03-(1 - x)PbTi03 (BI-PT) thin films are deposited on (101)SrRuO3/(lOO)Pt/(lO0) MgO substrates by the rf-magnetron sputtering method. The structures of the films are characterized by XRD and SEM, and the results indicate that the thin films are grown with mainly (100) oriented and columnar structures. The ferroelectricity and piezoelectricity of the BI-PT films are also measured, and the measured results illustrate that both performances are effectively improved by the La-doping with suitable concentrations. These results will open up wide potential applications of the films in electronic devices.
文摘A series of polycrystalline La-doped Li-Ni ferrites LiNi_ 0.5La_xFe_ 2-xO_4 (where x=0.0~0.08 in steps of 0.02) were prepared by thermolysising of oxalate precursors which were obtained by rheological phase reaction. Results were observed by powder X-ray diffractometer (XRD) on samples indicate that all doped ferrites have the major spinel phase, and the single spinel phase is obtained in La content x≤0.04. The lattice parameter increases in the range of x=0~0.04, then decreases up to x=0.08. The hysteresis loops show that the value of saturation magnetization is less than that of the pure Li-Ni ferrite except for x=0.04, while the coercivity increases with the La content.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51704188,51702199,61705125,51802181)the State Key Laboratory of Solidification Processing in NWPU(Grant No.SKLSP201809)+2 种基金Natural Science Foundation of Shaanxi Province(Grant No.2019JQ-099)Research Starting Foundation from Shaanxi University of Science and Technology(Grant No.2016GBJ-04)the financial support of China Scholarship Council(Grant No.201808610089)。
文摘In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared alloys in Na Cl solutions have been investigated with the help of nonlinear and linear fitting by Avrami-Erofeev and Arrhenius equations.Combining the microstructure information before and after hydrolysis and thermodynamics fitting results,the hydrolysis H_(2) generation mechanism based on nucleation&growth has been elaborated.The final H_(2) generation capacities of 0La,5La,10La and 15 La alloys are 677,653,641 and 770 m L·g^(-1)H_(2) in 240 min at291 K,respectively.While,the final H_(2) generation capacities of HEBM 0La,5La,10La and 15 La alloys are 632,824,611 and 653 m L·g^(-1)H_(2) in 20 min at 291 K,respectively.The as-cast 15La alloy and HEMB 5La alloy present the best H_(2) production rates and final H_(2) production capacities,especially the HEBM 5La can rapidly achieve high H_(2) generation capacity(670 and 824 m L·g^(-1)H_(2) )at low temperature(291 K)within short time(5 and 20 min).The difference between the H_(2) generation capacities is mainly originated from the initial nucleation rate of Mg(OH)_(2) and the subsequent processes affected by the microstructures and phase compositions of the hydrolysis alloys.Relative low initial nucleation rate and fully growth of Mg(OH)_(2) nucleus are the premise of high H_(2) generation capacity due to the hydrolysis H_(2) generation process consisted by the nucleation,growth and contacting of Mg(OH)_(2) nucleus.To utilization H_(2) by designing solid state H_(2) generators using optimized Mg-based alloys is expected to be a feasible H_(2) generation strategy at the moment.
基金supported by the National Natural Sci-ence Foundation of China under grant No. 10574047the Key Program of the Education Branch of Hubei Provinceof China under grant No. D200529002+1 种基金the Key Pro-gram of the Ethnic Affairs Committee of China undergrant No. 08HB05 the Scientific Research Foundation of Nanjing University of Post and Telecommunication un-der grant No. NY208025.
文摘Copper nitride film (Cu3N) and La-doped copper nitride films (LaxCu3N) were prepared on glass substrates by reactive magnetron sputtering of a pure Cu and a pure La targets under N2 atmosphere. The results show that La-free film was composed of Cu3N crystallites with anti-ReO3 structure with (111) texture. The formation of the LaxCu3N films is affected strongly by La, and the peak intensity of the preferred crystalline [111]-orientation decreases with increasing the concentration of La. High concentration of La may prevent the formation of the Cu3N from crystallization. Compared with the Cu3N films, the resistivity of the LaxCu3N films have been decreased.
基金financially supported by the National Natural Science Foundation of China (No.52300206)the Natural Science Foundation of Jiangsu Province (No.BK20230705)+3 种基金the Industry-University Research Cooperation Project of Jiangsu Province,China (No.BY20221227)Natural Science Foundation of Jiangsu Higher Education Institutions of China (No.22KJB610014)the Talent-Recruiting Program of Nanjing Institute of Technology (No.YKJ202124)the Open Fund of Advanced Industrial Technology Research Institute,Nanjing Institute of Technology (No. XJY202110)。
文摘Elemental doping is an effective strategy to enhance photocatalytic activity and extend the light absorption range of single-component photocatalysts.In this work,a series of La-doped CeO_(2) nanorods(La-CeO_(2)-x) with La content of 1 wt%-15 wt% are synthesized by a simple hydrothermal method and further used as photocatalyst for sulfamerazine(SMR) degradation.The prepared La-CeO_(2)-x nanorods exhibit a great improvement in electron-hole pair migration and visible-light response due to the synergistic effect of abundant oxygen vacancies and heterogeneous elements(La).Consequently,La-CeO_(2)-x exhibited excellent visible-light photocatalytic performances and chemical stability for SMR degradation,the La-CeO_(2)-5 sample achieved the highest SMR degradation rate of 81%,which was 3.4 times higher than that of the original CeO_(2).Furthermore,three possible degradation pathways of SMR in La-CeO_(2) photocatalytic reactions were proposed by liquid chromatography-mass spectrometry technique.Finally,density functional theory calculations were carried out to provide an in-depth understanding of the structure-performance relationships.Considering its excellent properties and better photocatalytic performance,this study demonstrates that La doping in CeO_(2) is an effective way to increase oxygen vacancy and improve the photochemical properties of photocatalysts.
基金Project supported by the National Natural Science Foundation of China (20871107)Henan Outstanding Youth Science Fund (0612002700)the Natural Science Foundation of the Education Department of Henan Province (2009A150031)
文摘Tin dioxide(SnO2) and La-doped(1%,5%,10% in mass ratio) SnO2 samples were prepared via a hydrothermal method. The as-prepared powders were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM) . Results showed that the particle size of SnO2 decreased gradually with the increase of the doped La element. When used as anode materials of Li ion battery,the La-doped samples exhibited better cycling performance than the pure SnO2,and the cycling performance of the La-doped samples got better and better with the increase of the doped La. The better electrochemical performance of the doped material could be attributed to the doping of La element,which not only enabled SnO2 powders to have a good dispersivity but also reduced their particle size.
基金financially supported by the National Natural Science Foundation of China(No.51103125)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(Chemistry)+2 种基金the Natural Science Foundation of Yangzhou(No.YZ2014043)the Science Innovative Foundation of Yangzhou University(No.2014CXJ017)the Graduate Student Innovation foundation of Yangzhou University(No.CXLX 1413)
文摘La-doped Sr-hexaferrite(Sr(1-x)LaxFe(12)O(19))(x=0.05,0.10,0.15,0.20) nanopowders with particle size ranging from 80 to 110 nm were successfully synthesized by sol-gel auto-combustion. The phase formation temperature increases, while the particle size decreases as the Ladoping content goes up. The partial substitution of Sr^(2+) by La^(3+) results in the suppression effects on the growth-up of the crystallites and the enhancement of the electron hopping between Fe^(3+) with different valences, which leads to the improvement in the dielectric loss and magnetic loss.Therefore, both the microwave absorbing abilities and absorbing frequency ranges are tuned by La-doping. The synthesized Sr-hexaferrite nanopowders with doping element content of 0.10 demonstrate the fine broad microwave absorbing properties.
基金supported by the Technology Development Program of Ministry of Small,medium enterprises and Startups(MSS),Korea[S2762001,S2731048]the National Research Foundation of Korea(NRF)grants(2017R1I1A1A01059072,2019R1I1A1A01059072,2019R1F1A1059292)a grant funded by the Ministry of Science and ICT(MIST),Korea(No.2019-0254).
文摘Three different series of lead-free ceramics,i.e.,(1-y)Bi1.03(1_x)LaxFeO_(3)-yBaTiO_(3)(y=0.27,x=0.00-0.12),(y=0.30,x=0.00-0.10),and(y=0.33,x=0.00-0.08)are prepared via a conventional solid-state reaction with water quenching.From X-ray diffraction and electrical property measurements,two morphotropic phase boundaries(MPBs)are discovered in all three ceramic systems.The first MPB(MPB-Ⅰ)appeared between rhombohedral and tetragonal phases,whereas the second MPB(MPB-Ⅱ)appeared between tetragonal and cubic-like phases.The highest direct piezoelectric coefficients(d_(33)=201,274,and 268 pC/N)are mainly attributed to the typical MPB-I of the rhombohedral and tetragonal phases.However,the highest converse piezoelectric coefficients(d_(33*)=490,500,and 570 pm/V with Curie temperature>330℃)are obtained for compositions near to the MPB-II.A significant enhancement in the dielectric constant at low temperature is associated with the local structural heterogeneity by La^(3+)doping,which serves as an origin for a high piezoelectric strain response.Based on the crystal structure as well as on the dielectric,ferroelectric,and piezoelectric properties,a phase diagram is constructed for La-doped BiFeO3-BaTiO3 ceramics.This phase diagram reveals the relationship between piezoelectric performance and crystal structure.
基金supported by National Nature Science Foundation of China (No.11075110)
文摘The La-dopping effect on the piezoelectricity in the K0.5Na0.5NbO3 (KNN) crystal with a tetragonal phase is investigated for the first time using the first-principle calculation based on density functional theory. The full potentiallinearized augumented plane wave plus local orbitals (APW-LO) method and the supercell method are used in the calculation for the KNN crystal with and without the La doping. The results show that the piezoelectricity originates from the strong hybridization between the Nb atom and the O atom, and the substitution of the K or Na atom by the La impurity atom introduces the anisotropic relaxation and enhances the piezoelectricity at first and then restrains the hybridization of the Nb-O atoms when the La doping content further increases.
基金Project supported by the Key Projects of the National Natural Science Foundation of China(Grant No.11032010)the National Natural Science Foundation of China(Grant Nos.51072171,61274107,61176093,and 11275163)+4 种基金the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1080)the National Basic Rearch Program of China(Grant No.2012CB326404)the Key Projects of Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.12A129)the Doctoral Program of Higher Education of China(Grant No.20104301110001)the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘The alternation from bipolar to unipolar resistive switching is observed in perovskite La0.01Sr0.99TiO3 thin films. These two switching modes can be activated separately depending on the compliance current (Icomp) during the electroforming process: with a higher Icomp (5 mA) the unipolar resistance switching behavior is measured, while the bipolar resistance switching behavior is observed with a lower Icomp (1 mA). On the basis of I–V characteristics, the switching mechanisms for the URS and BRS modes are considered as being a change in the Schottky-like barrier height and/or width at the Pt/La-SrTiO3 interface and the formation and disruption of conduction filaments, respectively.
基金supported by the National Natural Science Foundation of China (21166015)~~
文摘A series of BiFeO3 and lanthanum‐doped BiFeO3 photocatalysts were synthesized by a facile sol‐gel method using citric acid as complexing agent, and used to remove phenol in industrial wastewater under simulated sunlight irradiation. The samples were characterized by X‐ray diffraction, energy dispersive spectroscopy, X‐ray photoelectron spectroscopy, UV‐Vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The introduction of La effectively suppressed the generation of an impurity phase. All the metals (La, Bi and Fe) are well distributed. Under simulated sunlight irradiation, the La‐doped BiFeO3 photocatalysts exhibited superior photocatalytic activity to pure BiFeO3. The 15%La‐doped BiFeO3 photocatalyst exhibited the best activity, with a degradation rate of 96%and COD removal rate of 81.53%after irradiation for 180 min, and it showed good recycling stability. The enhanced photocatalytic ability of 15% La‐doped BiFeO3 was attributed to the in‐crease of adsorbed surface hydroxyl groups, enhancement of visible light absorption and reduction of electron‐hole recombination. We confirmed that the primary active species was -OH by adding different scavengers during the photodegradation of phenol and proposed a reaction mechanism based on these experiments.
基金Project(2014CB643406)supported by the National Basic Research Program of China
文摘A series of layered LiNi0.8?xCo0.1Mn0.1LaxO2(x=0,0.01,0.03)cathode materials were synthesized by combining co-precipitation and high temperature solid state reaction to investigate the effect of La-doping on LiNi0.8Co0.1Mn0.1O2.A new phase La2Li0.5Co0.5O4was observed by XRD,and the content of the new phase could be determined by Retiveld refinement and calculation.The cycle stability of the material is obviously increased from74.3%to95.2%after La-doping,while the initial capacity exhibits a decline trend from202mA·h/g to192mA·h/g.The enhanced cycle stability comes from both of the decrease of impurity and the protection of newly formed La2Li0.5Co0.5O4,which prevents the electrolytic corrosion to the active material.The CV measurement confirms that La-doped material exhibits better reversibility compared with the pristine material.
基金supported by the Program for Innovative Research Team (in Science and Technology) (No. 2009IRTHNIE05) in Henan Institute of Engineeringthe Foundation for University Key Teachers of Henan Province (No. 2008136)+1 种基金the Natural Science Fund of Henan Education Department, China (No. 2010C140001)the Youth Fund of Henan Institute of Engineering (No. Y10021)
文摘Polycrystalline samples of Bi 1.5 Pb 0.5 Sr 2-x La x Co 2 O y (x = 0.1, 0.2, 0.3) with a layered structure were prepared by solid-state reaction method. All samples are p-type semiconductors. The thermoelectric properties, namely, the electric resistivity (ρ), Seebeck coefficient (S), and power factor (S 2 /ρ) of the samples are dependent on chemical composition. The values of ρ, S, and S 2 /ρ increase with an increase in temperature for all samples. The substitution of Pb 2+ for Bi 3+ and La 3+ for Sr 2+ improves the thermoelectric properties of the Bi 2 Sr 2 Co 2 O y system owing to the simultaneous decrease of electric resistivity and increase of Seebeck coefficient. As a result, the optimal thermoelectric property has been obtained in Bi 1.5 Pb 0.5 Sr 1.7 La 0.3 Co 2 O y and the power factor can reach 2.1 × 10-4 W·m-1 K-2 at 998 K.
文摘Lanthanum and nitrogen co-doped SrTiO3 was synthesized using polymerized complex method with Ti(OC3H7)4, SrCl2·6H2O and La(NO3)3·6H2O as starting materials followed by calcinations in NH3. Ethylene glycol and anhydrous citric acid were used as the precursors of synthesis. The samples were characterized using XRD, TEM, DRS, BET, EDX and XPS. The cubic-perovskite type of La/N co-doped SrTiO3 nanoparticle could be successfully synthesized. The photocatalytic activity of SrTiO3 for DeNOx ability in visible light region (λ > 510 nm) could be improved by co-doping of La3+ and N3_. The high visible light photocatalytic activity of this substance was caused by a narrow band gap energy that enables to absorb visible light.
基金the financial supports from the National Natural Science Foundation of China (11474339)the National Basic Research Program of China (973 Program, 2016YFA0300301, 2010CB923000 and 2011CBA00100)the Youth Innovation Promotion Association of the Chinese Academy of Sciences
文摘We report the discovery and characterization of a novel 112-type iron pnictide EuFeAs2, with La-doping induced superconductivity in a series of Eu1- xLaxFeAs2. The polycrystalline samples were synthesized through solid state reaction method only within a very narrow temperature window around 1073 K. Small single crystals were also grown from a flux method with the size about 100μm. The crystal structure was identified by single crystal X-ray diffraction analysis as a monoclinic structure with space group of P2 1/m. From resistivity and magnetic susceptibility measurements, we found that the parent compound EuFeAs2 shows distinct anomalies probably due to the Fe2+ related antiferromagnetic/structural phase transition near 110K and the Eu2+ related antiferromagnetic phase transition near 40K. La-doping suppressed both phase transitions to lower temperatures and induced superconducting transitions with a Tc - 11 K for Eu0.85La0.15FeAs2.
基金Project supported by National Natural Science Foundation of China(51162022,21201098)support from the Test Foundation of Nanchang University (2012019)
文摘Pure and La-doped TiO2 thin films were prepared on glass by sol-gel method using tetrabutyl titanate as Ti precursors. Their chemical composition, structure and properties were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-Visible spectrophotometer and optical contact angle measuring instrument, respectively. The results showed that the content of La was the key factor for hydrophilic and photocatalytic activity. LaTiO3 could be formed in La-doped TiO2 thin films, which caused the TiO2 lattice distortion and restrained the transition from anatase to rutile. By adding 0.3 wt.% La to the TiO2 thin films, the optimal hydrophilic character could be obtained and the contact angle was only 9.6~. La-doped TiO~ thin films could ex- pand the wavelength response range of TiO2, and thus increase the speed of the photocatalytic reaction. 92.02% of methylene blue was finally degraded when the concentration of La was 0.3 wt.%. The expressions of ln(CAo/CA) as functions of photocatalytic time were deduced which were well consistent with the experimental results.
基金Project supported by the National Natural Science Foundation of China(51161004,51371061,51001033,51401060)Guangxi Natural Science Foundation(2014GXNSFAA118334)
文摘The nano-crystalline La_(0.1)Bi_(0.9)FeO_3 compound was successfully synthesized by starch-based combustion method. The crystal structure and magnetic behavior were studied by temperature-dependent X-ray diffraction(XRD), scanning electron microscopy(SEM), differential scanning calorimetry(DSC) and magnetic measurements. The La_(0.1)Bi_(0.9)FeO_3 compounds crystallized in a rhombohedrally distorted perovskite structure with space group R3 c. The substitution of La for Bi reduced the rhombohedral distortion. The structural phase transitions in La_(0.1)Bi_(0.9)FeO_3 driven by temperature showed that the extraordinary two-phase coexistence state of BiF eO 3 and LaF eO 3 was observed in a narrow temperature range of 630–700 oC. The magnetization of the La_(0.1)Bi_(0.9)FeO_3 sample was improved by heat treatment in the temperature range. When the heat treatment temperatures rose from 25 to 600 oC, the remanence(Mr) and coercivity(Hc) of the La_(0.1)Bi_(0.9)FeO_3 compound almost remained the same, and increased rapidly to 0.134 emu/g and 7.1 KOe on further increasing the heat treatment temperature to 650 oC.
基金Project supported by the National Natural Science Foundation of China.
文摘Ferroelectric ceramics lead lanthanum zirconate titanate (PLZT) exhibits excellentdielectric, pyroelectric, piezoelectric, ferroelectric, and electrooptic characteristics because ofits wide composition range. Thus, it has wide application in electronic and
基金funded by the Natural Science Foundation of China(No.21603109)the Henan Joint Fund of the National Natural Science Foundation of China(No.U1404216)+1 种基金the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.20JK0676)the Special Fund of Tianshui Normal University,China(No.CXJ2020-08)。
文摘To reduce the greenhouse effect caused by the surgery of nitrogen-oxides concentration in the atmosphere and develop a future energy carrier of renewables,it is very critical to develop more efficient,controllable,and highly sensitive catalytic materials.In our work,we proposed that nitric oxide(NO),as a supplement to N_(2) for the synthesis of ammonia,which is equipped with a lower barrier.And the study highlighted the potential of CeO_(2)(111)nanosheets with La doping and oxygen vacancy(OV)as a high-performance,controllable material for NO capture at the site of Vo site,and separation the process of hydrogenation.We also reported that the E_(ads) of-1.12 eV with horizontal adsorption and the Bader charge of N increasing of 0.53|e|and O increasing of 0.17|e|at the most active site of reduction-OV predicted.It is worth noting thatΔG of NORR(NO reduction reaction)shows good performance(thermodynamically spontaneous reaction)to synthesize ammonia and water at room temperature in the theoretical calculation.