采用脉冲激光溅射法分别在Sr Ti O3(STO)和Si(001)衬底上制备出La0.7Sr0.3Mn O3(LSMO)薄膜。通过X射线衍射仪、原子力显微镜、能谱仪以及磁性测量系统研究了薄膜晶体结构、表面形貌、成分以及电阻-温度特性。结果表明:STO衬底上的LSMO...采用脉冲激光溅射法分别在Sr Ti O3(STO)和Si(001)衬底上制备出La0.7Sr0.3Mn O3(LSMO)薄膜。通过X射线衍射仪、原子力显微镜、能谱仪以及磁性测量系统研究了薄膜晶体结构、表面形貌、成分以及电阻-温度特性。结果表明:STO衬底上的LSMO薄膜比Si衬底上的LSMO薄膜电阻低,金属-绝缘转变温度高。展开更多
A comparative study of the crystalline structure, magnetic properties, and transport properties of LSMO films grown on (100)-, (110)-, and (111) LaAlO3(LAO) substrates was carried out. Using atomic force micro...A comparative study of the crystalline structure, magnetic properties, and transport properties of LSMO films grown on (100)-, (110)-, and (111) LaAlO3(LAO) substrates was carried out. Using atomic force microscopy, round, rectangle, and dot surface morphologies were observed in ( 100)-, ( 110)-, and ( 111 )-oriented LSMO films, respectively. Electrical and magnetic characterizations were performed on LSMO films of different orientation to provide evidence for the effect of strain on the magnetotransport properties. The ( 111 )-oriented LSMO film has higher saturation magnetization and lower resistance compared with the (100)- and (110)-oriented LSMO films, which results from the smaller elastic deformation due to the larger elastic modulus along the 〈 111 〉 crystallographic direction.展开更多
Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-s...Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-strates by the polymer-assisted chemical solution deposi-tion (PACSD) method. Electronic transport behavior, microstructure, and magnetoresistance (MR) of LSMO thin films on different substrates were investigated. The resis-tance of LSMO films fabricated on LaAlO3 substrates is smaller than that on the Si substrates. The magnetic field reduces resistance of LSMO films both on Si and LAO in the wide temperature region, when the insulator-metal transition temperature shifts to higher temperature. The low-field magnetoresistance of LSMO films on Si in low temperature range at 1 T is larger than that of LSMO films on LAO. However, the MR of LSMO film on LAO films at room-temperature is about 5.17%. The thin films are smooth and dense with uniform nanocrystal size grain. These results demonstrate that PACSD is an effective technique for producing high quality LSMO films, which is significant to improve the magnetic properties and the application of automotive sensor.展开更多
文摘采用脉冲激光溅射法分别在Sr Ti O3(STO)和Si(001)衬底上制备出La0.7Sr0.3Mn O3(LSMO)薄膜。通过X射线衍射仪、原子力显微镜、能谱仪以及磁性测量系统研究了薄膜晶体结构、表面形貌、成分以及电阻-温度特性。结果表明:STO衬底上的LSMO薄膜比Si衬底上的LSMO薄膜电阻低,金属-绝缘转变温度高。
基金Project supported bythe Key Basic Research Project of MOST(2002CCC01300) the Natural Science Foundation of Beijing(2021003) the Science &Technology Development Project of Beijing Education Committee and Beijing Specific Projectto Foster Elitist (20041D0501513)
文摘A comparative study of the crystalline structure, magnetic properties, and transport properties of LSMO films grown on (100)-, (110)-, and (111) LaAlO3(LAO) substrates was carried out. Using atomic force microscopy, round, rectangle, and dot surface morphologies were observed in ( 100)-, ( 110)-, and ( 111 )-oriented LSMO films, respectively. Electrical and magnetic characterizations were performed on LSMO films of different orientation to provide evidence for the effect of strain on the magnetotransport properties. The ( 111 )-oriented LSMO film has higher saturation magnetization and lower resistance compared with the (100)- and (110)-oriented LSMO films, which results from the smaller elastic deformation due to the larger elastic modulus along the 〈 111 〉 crystallographic direction.
基金supported by the Program of International S&T Cooperation 2013DFA51050National Magnetic Confinement Fusion Science Program (2011GB112001)+2 种基金Science Foundation of Sichuan Province (2011JY0031, 2011JY0130)the financial support of the National Natural Science Foundation of China (No. 51271155, No. 51002125)the Fundamental Research Funds for the Central Universities (SWJTU12CX018)
文摘Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-strates by the polymer-assisted chemical solution deposi-tion (PACSD) method. Electronic transport behavior, microstructure, and magnetoresistance (MR) of LSMO thin films on different substrates were investigated. The resis-tance of LSMO films fabricated on LaAlO3 substrates is smaller than that on the Si substrates. The magnetic field reduces resistance of LSMO films both on Si and LAO in the wide temperature region, when the insulator-metal transition temperature shifts to higher temperature. The low-field magnetoresistance of LSMO films on Si in low temperature range at 1 T is larger than that of LSMO films on LAO. However, the MR of LSMO film on LAO films at room-temperature is about 5.17%. The thin films are smooth and dense with uniform nanocrystal size grain. These results demonstrate that PACSD is an effective technique for producing high quality LSMO films, which is significant to improve the magnetic properties and the application of automotive sensor.