La0.72Ca0.28MnO3 thin films were deposited on untilted and 15° tilted LaAlO_3 (100) single crystalline substrates by pulsed laser deposition. The polycrystalline targets used in the deposition process were synt...La0.72Ca0.28MnO3 thin films were deposited on untilted and 15° tilted LaAlO_3 (100) single crystalline substrates by pulsed laser deposition. The polycrystalline targets used in the deposition process were synthesized by sol-gel and coprecipitation methods, respectively. The structure, electrical transport properties and surface morphology of the targets and films were studied. It is found that, compared with coprecipitation method, the sol-gel target has more homogeneous components and larger density and grain size, thus the higher insulator-metal transition temperature and larger temperature coefficient of resistivity. The thin film prepared by sol-gel target has a uniform grain size and higher quality. The metal-insulator transition temperature is higher and the laser induced voltage signal is larger. Preparing the target by sol-gel method can largely improve the properties of corresponding thin films in pulsed laser deposition process.展开更多
Perovskite-type La0.8Sr0.2MnO3 was prepared by stearic acid gel combustion method.The obtained powders were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scaning electron micro...Perovskite-type La0.8Sr0.2MnO3 was prepared by stearic acid gel combustion method.The obtained powders were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scaning electron micrograph(SEM)and X-ray photoelectron spectroscopy(XPS)techniques.The catalytic activity of La0.8Sr0.2MnO3 was investigated on thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)by thermal gravity-differential scanning calorimetry(TG-DSC)techniques.The experimental results show that La0.8Sr0.2MnO3 is an effective catalyst for HMX thermal decomposition.The surface-adsorbed species such as H2O,OH - and adsorbed oxygen(Oad)could result in an advance in the onset temperature of HMX thermal decomposition.The mixture system of Mn 3+ and Mn 4+ ions and lattice oxygen could play key roles for the increase of the decomposition heat of HMX because these exothermic reactions could be catalyzed by La0.8Sr0.2MnO3 between CO and NOx(from the thermal decomposition of HMX)and the oxidation reaction of CO.According to the previous researches and our results,perovskite-type La0.8Sr0.2MnO3 may be used as a novel catalyst or modifier for nitrate ester plasticized polyether(NEPE)propellant.展开更多
La0.7Ca0.3MnO3 (LCMO) films and La0.7Ca0.3MnO3/Gd0.7Ca0.3MnO3 (LCMO/GCMO) multilayers have been prepared by pulsed laser deposition. The microstructures of both systems were investigated by transmission electron micr...La0.7Ca0.3MnO3 (LCMO) films and La0.7Ca0.3MnO3/Gd0.7Ca0.3MnO3 (LCMO/GCMO) multilayers have been prepared by pulsed laser deposition. The microstructures of both systems were investigated by transmission electron microscopy (TEM). The main structure of the films and the multilayers was monoclinic with a unit cell of size 2ap x-2ap. x -2ap, where ap is the lattice constant of single perovskite crystal. The LCMO films were composed of three-dimension multitwinning domains, while the LCMO/GCMO multilayers showed two-domain structure. In LCMO/GCMO multilayers, LCMO layers were coherent with GCMO layers and the interfaces between LCMO and GCMO layers were free from mismatch dislocation, which resulted in highly strained multilayerd structures.展开更多
基金Project(50902062)supported by the National Natural Science Foundation of ChinaProject(KKZ1200927002)supported by Key Programme of Kunming University of Science and Technology,China
文摘La0.72Ca0.28MnO3 thin films were deposited on untilted and 15° tilted LaAlO_3 (100) single crystalline substrates by pulsed laser deposition. The polycrystalline targets used in the deposition process were synthesized by sol-gel and coprecipitation methods, respectively. The structure, electrical transport properties and surface morphology of the targets and films were studied. It is found that, compared with coprecipitation method, the sol-gel target has more homogeneous components and larger density and grain size, thus the higher insulator-metal transition temperature and larger temperature coefficient of resistivity. The thin film prepared by sol-gel target has a uniform grain size and higher quality. The metal-insulator transition temperature is higher and the laser induced voltage signal is larger. Preparing the target by sol-gel method can largely improve the properties of corresponding thin films in pulsed laser deposition process.
基金Supported by the National Natural Science Foundation of China (20671084)
文摘Perovskite-type La0.8Sr0.2MnO3 was prepared by stearic acid gel combustion method.The obtained powders were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scaning electron micrograph(SEM)and X-ray photoelectron spectroscopy(XPS)techniques.The catalytic activity of La0.8Sr0.2MnO3 was investigated on thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)by thermal gravity-differential scanning calorimetry(TG-DSC)techniques.The experimental results show that La0.8Sr0.2MnO3 is an effective catalyst for HMX thermal decomposition.The surface-adsorbed species such as H2O,OH - and adsorbed oxygen(Oad)could result in an advance in the onset temperature of HMX thermal decomposition.The mixture system of Mn 3+ and Mn 4+ ions and lattice oxygen could play key roles for the increase of the decomposition heat of HMX because these exothermic reactions could be catalyzed by La0.8Sr0.2MnO3 between CO and NOx(from the thermal decomposition of HMX)and the oxidation reaction of CO.According to the previous researches and our results,perovskite-type La0.8Sr0.2MnO3 may be used as a novel catalyst or modifier for nitrate ester plasticized polyether(NEPE)propellant.
基金NAMCC under Grant86&715-014-0070 and NSFC under Grant 59601002 and59831020.
文摘La0.7Ca0.3MnO3 (LCMO) films and La0.7Ca0.3MnO3/Gd0.7Ca0.3MnO3 (LCMO/GCMO) multilayers have been prepared by pulsed laser deposition. The microstructures of both systems were investigated by transmission electron microscopy (TEM). The main structure of the films and the multilayers was monoclinic with a unit cell of size 2ap x-2ap. x -2ap, where ap is the lattice constant of single perovskite crystal. The LCMO films were composed of three-dimension multitwinning domains, while the LCMO/GCMO multilayers showed two-domain structure. In LCMO/GCMO multilayers, LCMO layers were coherent with GCMO layers and the interfaces between LCMO and GCMO layers were free from mismatch dislocation, which resulted in highly strained multilayerd structures.