The effect of 2-butyne-1, 4-diol (BD) on the deposition behavior of the Co-Ni alloy was investigated by linear sweep voltammetry. The results showed that BD could prevent the deposition of the Co-Ni alloy. The effec...The effect of 2-butyne-1, 4-diol (BD) on the deposition behavior of the Co-Ni alloy was investigated by linear sweep voltammetry. The results showed that BD could prevent the deposition of the Co-Ni alloy. The effect of BD concentration in the sulfate plating bath, on the structure of the Co-Ni deposit was studied by energy dispersive x-ray spectroscopy, scanning electron microscope, and X-ray diffraction, respectively. As a result, BD could smoothen the deposit surface and decrease the diameter of the grain, but too much of BD was not good for the size of the grain. In general, a hexagonal close-packed (hcp) phase of the Co-Ni alloy, with a preferentially oriented (110) plane, was prepared by electrodeposition in the presence of BD. The Co-Ni alloy as a catalyst for the electro-oxidation of ethanol in alkaline medium was investigated by cyclic voltammetry. The deposit plated from the bath containing BD possessed better electro-oxidation of ethanol performance compared with that of the deposit plated from only the sulfate plating bath, but too much of BD was not beneficial for catalytic activity. The Co-Ni film was suitable as a magnetic recording material.展开更多
Carbon nanotubes (CNTs) of narrow size distribution can be abundantly produced in the catalytic decomposition of CH4 over pre-reduced LaNiO3, La4Ni3O10, La3Ni2O7 and La2NiO4. The CNTs obtained were characterized by m...Carbon nanotubes (CNTs) of narrow size distribution can be abundantly produced in the catalytic decomposition of CH4 over pre-reduced LaNiO3, La4Ni3O10, La3Ni2O7 and La2NiO4. The CNTs obtained were characterized by means of transmission electron microscopy (TEM). Thermal oxidation of CNTs in air was monitored thermogravimetrically (TG). The results revealed that a lower La/Ni ratio of the catalysts would lead to a wider diameter distribution and a higher degree of graphitic nature.展开更多
基金supported by the Natural Science Foundation of Fujian Province,China(Grant No.2006J0440).
文摘The effect of 2-butyne-1, 4-diol (BD) on the deposition behavior of the Co-Ni alloy was investigated by linear sweep voltammetry. The results showed that BD could prevent the deposition of the Co-Ni alloy. The effect of BD concentration in the sulfate plating bath, on the structure of the Co-Ni deposit was studied by energy dispersive x-ray spectroscopy, scanning electron microscope, and X-ray diffraction, respectively. As a result, BD could smoothen the deposit surface and decrease the diameter of the grain, but too much of BD was not good for the size of the grain. In general, a hexagonal close-packed (hcp) phase of the Co-Ni alloy, with a preferentially oriented (110) plane, was prepared by electrodeposition in the presence of BD. The Co-Ni alloy as a catalyst for the electro-oxidation of ethanol in alkaline medium was investigated by cyclic voltammetry. The deposit plated from the bath containing BD possessed better electro-oxidation of ethanol performance compared with that of the deposit plated from only the sulfate plating bath, but too much of BD was not beneficial for catalytic activity. The Co-Ni film was suitable as a magnetic recording material.
文摘Carbon nanotubes (CNTs) of narrow size distribution can be abundantly produced in the catalytic decomposition of CH4 over pre-reduced LaNiO3, La4Ni3O10, La3Ni2O7 and La2NiO4. The CNTs obtained were characterized by means of transmission electron microscopy (TEM). Thermal oxidation of CNTs in air was monitored thermogravimetrically (TG). The results revealed that a lower La/Ni ratio of the catalysts would lead to a wider diameter distribution and a higher degree of graphitic nature.