Single crystals of La4Mo7O27 have been successfully grown by the flux growth method H3BO3 as the flux in a plantium crucible using the starting materials of La2O3, H3BO3 and MoO3 in a molar ratio of 0.16:0.16:0.68, in...Single crystals of La4Mo7O27 have been successfully grown by the flux growth method H3BO3 as the flux in a plantium crucible using the starting materials of La2O3, H3BO3 and MoO3 in a molar ratio of 0.16:0.16:0.68, in which H3BO3 acted as a flux. Transparent colorless crystals were obtained with size of 0.8 × 0.3 × 0.2 mm3 under the optimized crystal growth conditions: growth temperature of 727°C, growth time of 95 h and cooling rate of 0.5°C/hr. A well-developed morphology of the crystals was observed and analyzed. The preparation process of starting materials on crystal growth was investigated. The grown crystals were characterized by powder X-ray diffraction (PXRD), EDAX, SEM, UV-Vis, photoluminescence studies, thermal analysis, dielectric studies and second harmonic generation (SHG). The results are presented and discussed.展开更多
文摘Single crystals of La4Mo7O27 have been successfully grown by the flux growth method H3BO3 as the flux in a plantium crucible using the starting materials of La2O3, H3BO3 and MoO3 in a molar ratio of 0.16:0.16:0.68, in which H3BO3 acted as a flux. Transparent colorless crystals were obtained with size of 0.8 × 0.3 × 0.2 mm3 under the optimized crystal growth conditions: growth temperature of 727°C, growth time of 95 h and cooling rate of 0.5°C/hr. A well-developed morphology of the crystals was observed and analyzed. The preparation process of starting materials on crystal growth was investigated. The grown crystals were characterized by powder X-ray diffraction (PXRD), EDAX, SEM, UV-Vis, photoluminescence studies, thermal analysis, dielectric studies and second harmonic generation (SHG). The results are presented and discussed.