The radial distribution functions of molten salt solution LaF_(3)-4LiF and LaF_(3)-4KF systems were derived from X-ray difraction data at 1,083 K.The interionic distances in the melts were obtained,e.g.La^(3+)-F^(-)in...The radial distribution functions of molten salt solution LaF_(3)-4LiF and LaF_(3)-4KF systems were derived from X-ray difraction data at 1,083 K.The interionic distances in the melts were obtained,e.g.La^(3+)-F^(-)interaction was 0.238 and 0.233nm respectively in molten LaF_(3)-4LiF and LaF_(3)-4KF systems.The temperature and coulombic force of La^(3+)were discussed concerning the results of interionic distances in melt.展开更多
Methanol is one of the characteristic gases that distinguish between healthy individuals and lung cancer(LC)lesions in exhaled human breath.Its concentration in exhaled breath is generally below one part per million(1...Methanol is one of the characteristic gases that distinguish between healthy individuals and lung cancer(LC)lesions in exhaled human breath.Its concentration in exhaled breath is generally below one part per million(1×10^(-6)).The second-phase composite is widely regarded as one of the methods to improve the gas-sensing perfor-mance of metal oxide semiconductor(MOS)materials.In this study,LaF_(3)-Co_(3)O_(4) was synthesized by a simple hydrothermal method to enhance its low-concentration methanol gas-sensing performance.5 at%LaF_(3)-Co_(3)O_(4) nanorods exhibited excellent methanol detection performance,including a wider linear detection concentration range(0.2×10^(-6)~5×10^(-6)),a response value exceeding 4.0 for 1×10^(-6)methanol at 275°C and 75%relative humidity(RH),long-term stability(maximum deviation within 15%over 2 weeks),and excellent selectivity.The mechanism of performance enhancement was studied using various techniques,and density functional theory.The special spinel structure of Co_(3)O_(4),the high ionic migration of F-in LaF_(3),the larger specific surface area of 5 at%LaF_(3)-Co_(3)O_(4) nanorods,and the generated crystal defects all explain the excellentmethanol gas-sensing property.This work provides a novel route to prepare MOS composite materials for low-concentration methanol gas detection.展开更多
Owing to its excellent high-temperature resistance and high conductivity,zirconium diboride(ZrB_(2)) has been applied as an infrared suppression coating.However,ZrB_(2)is susceptible to hydrolysis under high-moisture ...Owing to its excellent high-temperature resistance and high conductivity,zirconium diboride(ZrB_(2)) has been applied as an infrared suppression coating.However,ZrB_(2)is susceptible to hydrolysis under high-moisture conditions and even under mild working temperatures.The improvement in the hydrophobicity of the ZrB_(2)surface effectively reduces wetting by water and suppresses hydrolysis reaction,particularly under high-temperature and high-moisture conditions.Herein,we report a novel,easy,and highly reproducible method for producing a fully coated ZrB_(2)surface by developing a nanoscale hydrophobic layer of glassy LaF_(3)on the surface of ZrB_(2)powder particles in situ(i.e.,during the carbothermal synthesis of ZrB_(2)).Through the tests carried out at 200 ℃for 100-300 h in a hydrothermal reactor,the produced powders displayed remarkably high long-term hydrolysis resistance and pronounced chemical stability.Compared with treated ZrB_(2),ZrB_(2)@LaF_(3)remained lower infrared emissivity when continuously intensifying hydrolyzation process.The results suggest that a nanoscale surface modification strategy can be applied to stabilize the infrared emissivity of ZrB_(2)in a water-oxygen coupling environment.展开更多
For better use of solar energy,the development of efficient broadband photocatalyst has attracted extraordinary attention.In this study,a ternary composite consisting of Sr_(2)LaF_(7)∶Yb^(3+),Er^(3+)upconversion(UC)n...For better use of solar energy,the development of efficient broadband photocatalyst has attracted extraordinary attention.In this study,a ternary composite consisting of Sr_(2)LaF_(7)∶Yb^(3+),Er^(3+)upconversion(UC)nanocrystals and Bi nanoparticles loaded BiOBr nanosheets with oxygen vacancies(OVs,SLFBB)was designed and synthesized by multi-step solvent-thermal method.Mechanisms of in-situ formation of Bi nanoparticles and OVs in BiOBr/Sr_(2)LaF_(7)∶Yb^(3+),Er^(3+)composites(SFLB)are clarified.The Bi metal and OVs enhanced the light-harvesting capacity in the region of visible-near-infrared(Vis-NIR),and promoted the separation of electron-hole(e-/h+)pairs.Furthermore,the surface plasmon resonance(SPR)effect of Bi metal can improve the energy transfer from Sr_(2)LaF_(7)∶Yb^(3+),Er^(3+)to BiOBr via nonradiative energy transfer process,resulting in enhancing the light utilization from up-converting NIR into Vis light.Due to the synergistic effects of UC function,SPR and OVs,the SFLBB exhibited obviously enhanced photocatalytic ability for the degradation of BPA with a rate of 8.9×10^(-3) min^(-1),which is about 2.78 times higher than 3.2×10^(-3) min^(-1) of BiOBr(BOB)under UV-Vis-NIR light irradiation.This work provides a novel strategy for the project of high-efficiency Bismuth-based broadband photocatalysts,which is helpful to fur-ther understand the mechanism of enhanced photocatalysis by UC function and plasmonic effect.展开更多
基金Project supported by Science Foundation of Laboratory of Rare Earth Chemistry and Physics。
文摘The radial distribution functions of molten salt solution LaF_(3)-4LiF and LaF_(3)-4KF systems were derived from X-ray difraction data at 1,083 K.The interionic distances in the melts were obtained,e.g.La^(3+)-F^(-)interaction was 0.238 and 0.233nm respectively in molten LaF_(3)-4LiF and LaF_(3)-4KF systems.The temperature and coulombic force of La^(3+)were discussed concerning the results of interionic distances in melt.
基金financially supported by the Outstanding Youth Foundation of Jiangsu Province of China(No.BK20211548)Yangzhou City-Yangzhou University Cooperation Foundation(No.YZ2021153)。
文摘Methanol is one of the characteristic gases that distinguish between healthy individuals and lung cancer(LC)lesions in exhaled human breath.Its concentration in exhaled breath is generally below one part per million(1×10^(-6)).The second-phase composite is widely regarded as one of the methods to improve the gas-sensing perfor-mance of metal oxide semiconductor(MOS)materials.In this study,LaF_(3)-Co_(3)O_(4) was synthesized by a simple hydrothermal method to enhance its low-concentration methanol gas-sensing performance.5 at%LaF_(3)-Co_(3)O_(4) nanorods exhibited excellent methanol detection performance,including a wider linear detection concentration range(0.2×10^(-6)~5×10^(-6)),a response value exceeding 4.0 for 1×10^(-6)methanol at 275°C and 75%relative humidity(RH),long-term stability(maximum deviation within 15%over 2 weeks),and excellent selectivity.The mechanism of performance enhancement was studied using various techniques,and density functional theory.The special spinel structure of Co_(3)O_(4),the high ionic migration of F-in LaF_(3),the larger specific surface area of 5 at%LaF_(3)-Co_(3)O_(4) nanorods,and the generated crystal defects all explain the excellentmethanol gas-sensing property.This work provides a novel route to prepare MOS composite materials for low-concentration methanol gas detection.
基金financially supported by the National Natural Science Foundation of China(Nos.51802037 and 51972046)Sichuan Science and Technology Program(No.2020JDRC0045)
文摘Owing to its excellent high-temperature resistance and high conductivity,zirconium diboride(ZrB_(2)) has been applied as an infrared suppression coating.However,ZrB_(2)is susceptible to hydrolysis under high-moisture conditions and even under mild working temperatures.The improvement in the hydrophobicity of the ZrB_(2)surface effectively reduces wetting by water and suppresses hydrolysis reaction,particularly under high-temperature and high-moisture conditions.Herein,we report a novel,easy,and highly reproducible method for producing a fully coated ZrB_(2)surface by developing a nanoscale hydrophobic layer of glassy LaF_(3)on the surface of ZrB_(2)powder particles in situ(i.e.,during the carbothermal synthesis of ZrB_(2)).Through the tests carried out at 200 ℃for 100-300 h in a hydrothermal reactor,the produced powders displayed remarkably high long-term hydrolysis resistance and pronounced chemical stability.Compared with treated ZrB_(2),ZrB_(2)@LaF_(3)remained lower infrared emissivity when continuously intensifying hydrolyzation process.The results suggest that a nanoscale surface modification strategy can be applied to stabilize the infrared emissivity of ZrB_(2)in a water-oxygen coupling environment.
基金This work was supported by the National Natural Science Foundation of China(No.11874186)Foundation of Yunnan Province(No.2019HC016).
文摘For better use of solar energy,the development of efficient broadband photocatalyst has attracted extraordinary attention.In this study,a ternary composite consisting of Sr_(2)LaF_(7)∶Yb^(3+),Er^(3+)upconversion(UC)nanocrystals and Bi nanoparticles loaded BiOBr nanosheets with oxygen vacancies(OVs,SLFBB)was designed and synthesized by multi-step solvent-thermal method.Mechanisms of in-situ formation of Bi nanoparticles and OVs in BiOBr/Sr_(2)LaF_(7)∶Yb^(3+),Er^(3+)composites(SFLB)are clarified.The Bi metal and OVs enhanced the light-harvesting capacity in the region of visible-near-infrared(Vis-NIR),and promoted the separation of electron-hole(e-/h+)pairs.Furthermore,the surface plasmon resonance(SPR)effect of Bi metal can improve the energy transfer from Sr_(2)LaF_(7)∶Yb^(3+),Er^(3+)to BiOBr via nonradiative energy transfer process,resulting in enhancing the light utilization from up-converting NIR into Vis light.Due to the synergistic effects of UC function,SPR and OVs,the SFLBB exhibited obviously enhanced photocatalytic ability for the degradation of BPA with a rate of 8.9×10^(-3) min^(-1),which is about 2.78 times higher than 3.2×10^(-3) min^(-1) of BiOBr(BOB)under UV-Vis-NIR light irradiation.This work provides a novel strategy for the project of high-efficiency Bismuth-based broadband photocatalysts,which is helpful to fur-ther understand the mechanism of enhanced photocatalysis by UC function and plasmonic effect.