Composite magnetic refrigerants were prepared by physical mixing LaFeSiHalloys with different Curie temperatures(Tc). The phase structures of these LaFeSiHalloys were analyzed by X-ray diffraction(XRD) and the magneto...Composite magnetic refrigerants were prepared by physical mixing LaFeSiHalloys with different Curie temperatures(Tc). The phase structures of these LaFeSiHalloys were analyzed by X-ray diffraction(XRD) and the magnetocaloric effect(MCE) and refrigerant capacity(RC) of these composite magnetic refrigerants were investigated by experiment and calculation in this paper. The magnetocaloric effect(MCE) and refrigerant capacity(RC) of these composite magnetic refrigerants were investigated by experiment and calculation in this paper. The results indicate the experimental magnetic entropy change(-△S)-Tcurve corresponds reasonably with the(-△S)-Tcurve calculated by the linear combination of(-△S)-T curves of the single material. An optimal mixing ratio can make the composite magnetic refrigerant possess a table-like(-△S)-Tcurve which is beneficial to magnetic Ericsson cycle. When three LaFeSiHalloys with different Tare mixed, the full width at half maximum(△T) of(-△S)-T curves is about 48.7 K and the RC is about 177.76 J/kg under a magnetic field change of 2 T. The composite magnetic refrigerants based on LaFeSiHalloys can be promising candidates for near room temperature magnetic refrigeration and the work will be helpful to develop novel composite magnetic refrigerants with table-like MCE and large RC.展开更多
The FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were prepared by hot pressing(HP). The microstructure,corrosion behavior and magnetocaloric effect(MCE) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were investiga...The FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were prepared by hot pressing(HP). The microstructure,corrosion behavior and magnetocaloric effect(MCE) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were investigated systematically. The results show that the corrosion resistance of FeNi coated LaFe_(11.6)Si_(1.4)Sn composites is better than that of LaFe_(11.6)Si_(1.4)/Sn composites in deionized water. The maximum magnetic entropy change((-△S_M)^(max)) and relative cooling power(RCP) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites are 13.30 J/(kg-K) and 146.25 J/kg, respectively, which are larger than that((-△S_M)^(max), 10.65 J/(kg·K) and RCP, 106.53 J/kg) of LaFe_(11.6)Si_(1.4)/Sn composites in a low magnetic field change of 2 T. FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites possess a more negative slope. The improvement of magnetic properties is due to high permeability FeNi permalloy(1 J85) which improves the itinerant-electron metamagnetic(IEM) transition. So, the method of coating FeNi can provide a new idea for enhancing the corrosion resistance and magnetocaloric effect of La(Fe_xSi_(1-x))_(13)-based materials.展开更多
基金supported by the Key Project of National Natural Science Foundation of China(51176065)
文摘Composite magnetic refrigerants were prepared by physical mixing LaFeSiHalloys with different Curie temperatures(Tc). The phase structures of these LaFeSiHalloys were analyzed by X-ray diffraction(XRD) and the magnetocaloric effect(MCE) and refrigerant capacity(RC) of these composite magnetic refrigerants were investigated by experiment and calculation in this paper. The magnetocaloric effect(MCE) and refrigerant capacity(RC) of these composite magnetic refrigerants were investigated by experiment and calculation in this paper. The results indicate the experimental magnetic entropy change(-△S)-Tcurve corresponds reasonably with the(-△S)-Tcurve calculated by the linear combination of(-△S)-T curves of the single material. An optimal mixing ratio can make the composite magnetic refrigerant possess a table-like(-△S)-Tcurve which is beneficial to magnetic Ericsson cycle. When three LaFeSiHalloys with different Tare mixed, the full width at half maximum(△T) of(-△S)-T curves is about 48.7 K and the RC is about 177.76 J/kg under a magnetic field change of 2 T. The composite magnetic refrigerants based on LaFeSiHalloys can be promising candidates for near room temperature magnetic refrigeration and the work will be helpful to develop novel composite magnetic refrigerants with table-like MCE and large RC.
基金Project supported by the Key Project of National Natural Science Foundation of China(51176065)
文摘The FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were prepared by hot pressing(HP). The microstructure,corrosion behavior and magnetocaloric effect(MCE) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites were investigated systematically. The results show that the corrosion resistance of FeNi coated LaFe_(11.6)Si_(1.4)Sn composites is better than that of LaFe_(11.6)Si_(1.4)/Sn composites in deionized water. The maximum magnetic entropy change((-△S_M)^(max)) and relative cooling power(RCP) of FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites are 13.30 J/(kg-K) and 146.25 J/kg, respectively, which are larger than that((-△S_M)^(max), 10.65 J/(kg·K) and RCP, 106.53 J/kg) of LaFe_(11.6)Si_(1.4)/Sn composites in a low magnetic field change of 2 T. FeNi coated LaFe_(11.6)Si_(1.4)/Sn composites possess a more negative slope. The improvement of magnetic properties is due to high permeability FeNi permalloy(1 J85) which improves the itinerant-electron metamagnetic(IEM) transition. So, the method of coating FeNi can provide a new idea for enhancing the corrosion resistance and magnetocaloric effect of La(Fe_xSi_(1-x))_(13)-based materials.