It is important to develop control techniques able to control not only known chaos but also chaotic systems with unknown parameters. This paper proposes a novel adaptive tracking control approach for identifying the u...It is important to develop control techniques able to control not only known chaos but also chaotic systems with unknown parameters. This paper proposes a novel adaptive tracking control approach for identifying the unknown parameters and controlling the chaos, which is not closely related to the particular chaotic system to be controlled. The global uniform boundedness of estimated parameters and the asymptotical stability of the tracking errors are proved by Lyapunov stability theory and LaSalleYoshizawa theorem. The suggested method enables stabilization of chaotic motion to a steady state ad well as tracking of any desired trajectory to be achieved in a systematic way. Computer simulation on a complex chaotic system illustrtes the effectiveness of the proposed control method.展开更多
文摘It is important to develop control techniques able to control not only known chaos but also chaotic systems with unknown parameters. This paper proposes a novel adaptive tracking control approach for identifying the unknown parameters and controlling the chaos, which is not closely related to the particular chaotic system to be controlled. The global uniform boundedness of estimated parameters and the asymptotical stability of the tracking errors are proved by Lyapunov stability theory and LaSalleYoshizawa theorem. The suggested method enables stabilization of chaotic motion to a steady state ad well as tracking of any desired trajectory to be achieved in a systematic way. Computer simulation on a complex chaotic system illustrtes the effectiveness of the proposed control method.