The magnetic refrigeration(MR)utilizing magnetocaloric effect(MCE)has been recognized as an environmentally friendly and energy efficiency technology.Here we presented the magnetic properties and MCE in Pr-doped La_(1...The magnetic refrigeration(MR)utilizing magnetocaloric effect(MCE)has been recognized as an environmentally friendly and energy efficiency technology.Here we presented the magnetic properties and MCE in Pr-doped La_(1-x)Pr_(x)Fe_(12)B_(6)(x=0.05-0.2)itinerant-electron metamagnetic(IEM)compounds.A small amount of Pr doping La site can greatly improve the peak values in the magnetic entropy change S_(M)(T)curves,especially under relatively low magnetic field changes(ΔH).Additionally,the peak temperature increases gradually and the magnetic hysteresis reduces gradually with increasing x.The observed MCE in present La_(1-x)Pr_(x)Fe_(12)B_(6)compounds is related to its field-induced first-ordered IEM transition.The peak values ofΔS_(M)for La_(1-x)Pr_(x)Fe_(12)B_(6)compounds reach 13.4,15.4,12.5 and 13.0 J/(kg K)at T_(C)~58,68,72and 89 K for x=0.05,0.10,0.15 and 0.2 under H of 0-7 T,respectively.The corresponding relative cooling power values are 462.3,480.7,372.4 and 375.7 J/kg.The present La_(1-x)Pr_(x)Fe_(12)B_(6)compounds could be good candidates for active MR application if the magnetic and thermal hysteresis can be further reduced.The present work indicates that the La Fe_(12)B_(6)-based material system could also exhibit promising magnetocaloric performances.展开更多
基金supported by the National Natural Science Foundation of China(No.91963123)the Ten Thousand Talents Plan of Zhejiang Province of China(No.2018R52003)。
文摘The magnetic refrigeration(MR)utilizing magnetocaloric effect(MCE)has been recognized as an environmentally friendly and energy efficiency technology.Here we presented the magnetic properties and MCE in Pr-doped La_(1-x)Pr_(x)Fe_(12)B_(6)(x=0.05-0.2)itinerant-electron metamagnetic(IEM)compounds.A small amount of Pr doping La site can greatly improve the peak values in the magnetic entropy change S_(M)(T)curves,especially under relatively low magnetic field changes(ΔH).Additionally,the peak temperature increases gradually and the magnetic hysteresis reduces gradually with increasing x.The observed MCE in present La_(1-x)Pr_(x)Fe_(12)B_(6)compounds is related to its field-induced first-ordered IEM transition.The peak values ofΔS_(M)for La_(1-x)Pr_(x)Fe_(12)B_(6)compounds reach 13.4,15.4,12.5 and 13.0 J/(kg K)at T_(C)~58,68,72and 89 K for x=0.05,0.10,0.15 and 0.2 under H of 0-7 T,respectively.The corresponding relative cooling power values are 462.3,480.7,372.4 and 375.7 J/kg.The present La_(1-x)Pr_(x)Fe_(12)B_(6)compounds could be good candidates for active MR application if the magnetic and thermal hysteresis can be further reduced.The present work indicates that the La Fe_(12)B_(6)-based material system could also exhibit promising magnetocaloric performances.