Efficient electrical control of magnetic property is critical for the development of various spintronics. However, traditional magnetoelectric devices require adoption of piezoelectric component, resulting in complica...Efficient electrical control of magnetic property is critical for the development of various spintronics. However, traditional magnetoelectric devices require adoption of piezoelectric component, resulting in complicated device architecture and complex conditioning circuit. More importantly, traditional strain-mediated magnetoelectric structures could not be developed in flexible form due to the existence of magnetostrictive component, which could be easily affected by mechanical deformation in flexible devices. Here we have systematically investigated pure current control of the magnetic properties of La_(0.7)Sr_(0.3)MnO_(3) thin films. Ferromagnetic to paramagnetic phase transition has been realized with a small current density of 5.2 × 10^(3) A/cm^(2), which is three orders smaller than the working current density of spintronics based on spin-orbit torque and spin-transfer torque. The effective tuning of magnetic property has been attributed to the current induced Joule heating effect. For La_(0.7)Sr_(0.3)MnO_(3) film grown on flexible Mica with a smaller thermal conductivity, dramatic change of ferromagnetic resonance field of 1340 Oe and nonvolatile magnetization switching have been achieved with an ultra-small current density of 7.4 × 10^(2) A/cm^(2). These results represent a crucial step towards effective electrical control of both static and dynamic magnetic properties in flexible magnetic thin films and open a new avenue for exploring electrical controlled flexible spintronics.展开更多
We report a universal method to transfer freestanding La_(0.7)Sr_(0.3)MnO_(3)membranes to target substrates.The 4-unit-cell-thick freestanding La_(0.7)Sr_(0.3)MnO_(3)membrane exhibits the enhanced ferromagnetism,condu...We report a universal method to transfer freestanding La_(0.7)Sr_(0.3)MnO_(3)membranes to target substrates.The 4-unit-cell-thick freestanding La_(0.7)Sr_(0.3)MnO_(3)membrane exhibits the enhanced ferromagnetism,conductivity and out-of-plane magnetic anisotropy,which otherwise shows nonmagnetic/antiferromagnetic and insulating behavior due to the intrinsic epitaxial strain.This work facilitates the promising applications of ultrathin freestanding correlated oxide membranes in electronics and spintronics.展开更多
为进一步提高动力电池正极材料锰酸锂(LiMn_2O_4)的循环稳定性,通过溶胶-凝胶法用快离子导体La_(0.8)Sr_(0.2)MnO_3作为包覆材料对LiMn_2O_4进行表面修饰,探讨了不同包覆量对复合材料电化学性能的影响。采用X射线衍射仪(XRD)、场发射扫...为进一步提高动力电池正极材料锰酸锂(LiMn_2O_4)的循环稳定性,通过溶胶-凝胶法用快离子导体La_(0.8)Sr_(0.2)MnO_3作为包覆材料对LiMn_2O_4进行表面修饰,探讨了不同包覆量对复合材料电化学性能的影响。采用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)和透射电子显微镜(TEM)对样品的微观结构以及形貌进行表征。结果表明:La_(0.8)Sr_(0.2)MnO_3的包覆并没有改变LiMn_2O_4晶体结构及空间构型;相比纯的LiMn_2O_4样品,La_(0.8)Sr_(0.2)MnO_3包覆后的样品颗粒表面较为粗糙;涂层为薄膜状结构,均匀且完全包覆在LiMn_2O_4颗粒的表面。利用电化学测试方法测试其电化学性能,测试结果表明,当La_(0.8)Sr_(0.2)MnO_3包覆量为5%时,具有较好的电化学性能,首次放电比容量为127.4 m A·h/g(0.1 C),25℃循环400次后容量保持率为91.2%,55℃循环100次后容量保持率为91.1%;与未经表面修饰的样品相比,其首次放电比容量为119.1 m A·h/g(0.1 C),400次的容量保持率为61.9%,100次容量保持率为77.9%,La_(0.8)Sr_(0.2)MnO_3包覆后的样品的电化学性能尤其是循环性能得到明显的提高。展开更多
LaSrMnOfilms are deposited on(001) silicon substrates,in which the silicon surfaces have artificially been treated into the scallops-like,pyramid-like,and smooth polishing structure,by pulsed laser deposition.The magn...LaSrMnOfilms are deposited on(001) silicon substrates,in which the silicon surfaces have artificially been treated into the scallops-like,pyramid-like,and smooth polishing structure,by pulsed laser deposition.The magnetoresistances of the films on etched substrates under low applied field are very sensitive to the applied field,and much larger(14.3% for acid-etched,and 42.9% for alkali-etched) than that on the polished Si at 5 K.Zero-field-cooled and field-cooled magnetization behaviors are measured and analyzed.Remarkable upturn behaviors in temperature-dependent resistivity for all samples are observed at low temperature,which follows the Efros-Shkloskii variable range hopping law and the Arrhenius law.We believe that the rough surface may be useful in device design.展开更多
La0.8Sr0.2Co1-yFeyO3-δ (y=0.2, 0.4, 0.6, 0.8) powders were synthesized by ethylenediamine tetraacetic acid (EDTA) complexing sol-gel process. The powders were characterized via X-ray diffraction (XRD) and scanning el...La0.8Sr0.2Co1-yFeyO3-δ (y=0.2, 0.4, 0.6, 0.8) powders were synthesized by ethylenediamine tetraacetic acid (EDTA) complexing sol-gel process. The powders were characterized via X-ray diffraction (XRD) and scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDS). The results showed that single-phased perovskite-type oxide powders with small particle size were obtained by the process, and the compositions of the productions agreed with the designed molar ratio. The electronic conductivity and ionic conductivity of La0.8Sr0.2Co1-yFeyO3-δ were investigated by DC four-terminal method and AC impedance spectroscopy, respectively. The electronic conductivity of La0.8Sr0.2Co1-yFeyO3-δ is approximately 2~4 orders of magnitude higher than the ionic conductivity. It was confirmed that the conductivities of the materials were strongly influenced by the composition anions, temperature and sample preparing process.展开更多
With substitution of La by Tb in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3, the room temperature magnetoresistance △R/R_0drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room te...With substitution of La by Tb in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3, the room temperature magnetoresistance △R/R_0drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room temperaturemagnetoresistance at a field H=12 kOe for (La_(0.9)Tb_(0.1))_(0.67)Sr_(0.33)MnO_3 is -3.56%. The enhancement of the roomtemperature magnetoresistance induced by an appropriate Tb substitution in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3 is correlatedwith the shifts of the Curie temperature and metal-insulator temperature to near room temperature. The drop ofthe room temperature magnetoresistance at large Tb doping-contents may be due to its lower T_C and T_(MI) far fromthe room temperature.展开更多
The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitatio...The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitation method with metal-nitrates as starting materials and mixed alkali (NaOH and Na2CO3) as a precipitating agent. The formation process of LSCCF from the precursors was monitored by TG-DSC, and the crystal structure and particles morphology of the precursors which were calcined at 600, 800, 1000 ℃ for 3 h were characterized using XRD, SEM technologies. Compared with the solid state reaction of constituent oxides, when the pH value of the precipitating solution was in the range of 9.1~9.5, the LSCCF powders from the precursors caclined at 800 ℃ for 3 h had high purity, homogeneous and single perovskite phase. The electrical conductivity of the LSCCF samples sintered at 1200 ℃ for 3 h, which was measured as a function of temperatures from 100 to 800 ℃ by DC four-probe method in air, decreased with x from 0.05 to 0.20. The value of electrical conductivity was almost equal because of Ca2+, Sr2+ co-dopant resulting in the 'mix effect' while x=0.10 or 0.15. The electrical conductivity of all doped samples was higher than 100 S·cm-1 at intermediate temperatures from 500 to 800 ℃, and there was good compatibility between the LSCCF cathode and Ce0.8Sm0.2O2 electrolyte.展开更多
Combustion catalyst La_(0.8)Sr_(0.2)CoO_3 (LSC) is expected to possess relatively high activity for the oxidation of carbon monoxide and many hydrocarbons. If γ-Al_2O_3 is used as its support, cobalt ions can easily ...Combustion catalyst La_(0.8)Sr_(0.2)CoO_3 (LSC) is expected to possess relatively high activity for the oxidation of carbon monoxide and many hydrocarbons. If γ-Al_2O_3 is used as its support, cobalt ions can easily react with γ-Al_2O_3 at not very high temperature to form spinel CoAl_2O_4 or spinel-like, which decreases the activity of the combustion catalyst. In this paper, MgAl_2O_4 and CaAl_2O_4 were pre-coated on γ-Al_2O_3 by impregnation respectively, which formed compound support for LSC. It is shown that, when MgAl_2O_4 layer is covered on the surface of MgAl_2O_4 by impregnation, the entering of cobalt ions into γ-Al_2O_3 lattice is restrained, then LSC formed on the surface of MgAl_2O_4, which leads to a good catalytic activity of xylene complete oxidation. But the layer of MgAl_2O_4 should be thick enough to reach 30% (mass fraction) MgO in the support due to large size particle of MgAl_2O_4 crystalline. If polyvinyl alcohol (PVA) is added into the impregnation solution adequately, MgAl_2O_4 particles formed on the surface of γ-Al_2O_3 are getting smaller, and less amount of MgAl_2O_4 is needed to cover up the surface of γ-Al_2O_3. If CaAl_2O_4 layer substituted for MgAl_2O_4, more closed cover is obtained in virtue of fine particles of CaAl_2O_4. The activity examination shows that smaller particles of MgAl_2O_4 or CaAl_2O_4 can be more effective to hinder cobalt ions entering the lattice of γ-Al_2O_3, and better activities will be obtained.展开更多
基金supported by the National Key R&D Program of China(No.2022YFB3206800)the National Natural Science Foundation of China(No.62371385).
文摘Efficient electrical control of magnetic property is critical for the development of various spintronics. However, traditional magnetoelectric devices require adoption of piezoelectric component, resulting in complicated device architecture and complex conditioning circuit. More importantly, traditional strain-mediated magnetoelectric structures could not be developed in flexible form due to the existence of magnetostrictive component, which could be easily affected by mechanical deformation in flexible devices. Here we have systematically investigated pure current control of the magnetic properties of La_(0.7)Sr_(0.3)MnO_(3) thin films. Ferromagnetic to paramagnetic phase transition has been realized with a small current density of 5.2 × 10^(3) A/cm^(2), which is three orders smaller than the working current density of spintronics based on spin-orbit torque and spin-transfer torque. The effective tuning of magnetic property has been attributed to the current induced Joule heating effect. For La_(0.7)Sr_(0.3)MnO_(3) film grown on flexible Mica with a smaller thermal conductivity, dramatic change of ferromagnetic resonance field of 1340 Oe and nonvolatile magnetization switching have been achieved with an ultra-small current density of 7.4 × 10^(2) A/cm^(2). These results represent a crucial step towards effective electrical control of both static and dynamic magnetic properties in flexible magnetic thin films and open a new avenue for exploring electrical controlled flexible spintronics.
基金supported in part by the National Key R&D Program of China(Grant No.2022YFA1402404)the National Natural Science Foundation of China(Grant Nos.62274085,11874203,and 61822403)。
文摘We report a universal method to transfer freestanding La_(0.7)Sr_(0.3)MnO_(3)membranes to target substrates.The 4-unit-cell-thick freestanding La_(0.7)Sr_(0.3)MnO_(3)membrane exhibits the enhanced ferromagnetism,conductivity and out-of-plane magnetic anisotropy,which otherwise shows nonmagnetic/antiferromagnetic and insulating behavior due to the intrinsic epitaxial strain.This work facilitates the promising applications of ultrathin freestanding correlated oxide membranes in electronics and spintronics.
文摘为进一步提高动力电池正极材料锰酸锂(LiMn_2O_4)的循环稳定性,通过溶胶-凝胶法用快离子导体La_(0.8)Sr_(0.2)MnO_3作为包覆材料对LiMn_2O_4进行表面修饰,探讨了不同包覆量对复合材料电化学性能的影响。采用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)和透射电子显微镜(TEM)对样品的微观结构以及形貌进行表征。结果表明:La_(0.8)Sr_(0.2)MnO_3的包覆并没有改变LiMn_2O_4晶体结构及空间构型;相比纯的LiMn_2O_4样品,La_(0.8)Sr_(0.2)MnO_3包覆后的样品颗粒表面较为粗糙;涂层为薄膜状结构,均匀且完全包覆在LiMn_2O_4颗粒的表面。利用电化学测试方法测试其电化学性能,测试结果表明,当La_(0.8)Sr_(0.2)MnO_3包覆量为5%时,具有较好的电化学性能,首次放电比容量为127.4 m A·h/g(0.1 C),25℃循环400次后容量保持率为91.2%,55℃循环100次后容量保持率为91.1%;与未经表面修饰的样品相比,其首次放电比容量为119.1 m A·h/g(0.1 C),400次的容量保持率为61.9%,100次容量保持率为77.9%,La_(0.8)Sr_(0.2)MnO_3包覆后的样品的电化学性能尤其是循环性能得到明显的提高。
基金supported by the National Natural Science Foundation of China(Grant Nos.U1332205,11274153,11204124,and 51202108)
文摘LaSrMnOfilms are deposited on(001) silicon substrates,in which the silicon surfaces have artificially been treated into the scallops-like,pyramid-like,and smooth polishing structure,by pulsed laser deposition.The magnetoresistances of the films on etched substrates under low applied field are very sensitive to the applied field,and much larger(14.3% for acid-etched,and 42.9% for alkali-etched) than that on the polished Si at 5 K.Zero-field-cooled and field-cooled magnetization behaviors are measured and analyzed.Remarkable upturn behaviors in temperature-dependent resistivity for all samples are observed at low temperature,which follows the Efros-Shkloskii variable range hopping law and the Arrhenius law.We believe that the rough surface may be useful in device design.
基金the National Natural Science Foundation of China (50204007)the Talent Foundation of Yunnan Province (2005PY01-33)Programfor New Century Excellent Talents in University (NCET-07-0387)
文摘La0.8Sr0.2Co1-yFeyO3-δ (y=0.2, 0.4, 0.6, 0.8) powders were synthesized by ethylenediamine tetraacetic acid (EDTA) complexing sol-gel process. The powders were characterized via X-ray diffraction (XRD) and scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDS). The results showed that single-phased perovskite-type oxide powders with small particle size were obtained by the process, and the compositions of the productions agreed with the designed molar ratio. The electronic conductivity and ionic conductivity of La0.8Sr0.2Co1-yFeyO3-δ were investigated by DC four-terminal method and AC impedance spectroscopy, respectively. The electronic conductivity of La0.8Sr0.2Co1-yFeyO3-δ is approximately 2~4 orders of magnitude higher than the ionic conductivity. It was confirmed that the conductivities of the materials were strongly influenced by the composition anions, temperature and sample preparing process.
文摘With substitution of La by Tb in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3, the room temperature magnetoresistance △R/R_0drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room temperaturemagnetoresistance at a field H=12 kOe for (La_(0.9)Tb_(0.1))_(0.67)Sr_(0.33)MnO_3 is -3.56%. The enhancement of the roomtemperature magnetoresistance induced by an appropriate Tb substitution in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3 is correlatedwith the shifts of the Curie temperature and metal-insulator temperature to near room temperature. The drop ofthe room temperature magnetoresistance at large Tb doping-contents may be due to its lower T_C and T_(MI) far fromthe room temperature.
基金the National High-Tech Development Plan (2006AA05Z417)the Natural Science Foundation of Lia-oning Province (20062145)the Education department of Liaoning Province (05L073)
文摘The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitation method with metal-nitrates as starting materials and mixed alkali (NaOH and Na2CO3) as a precipitating agent. The formation process of LSCCF from the precursors was monitored by TG-DSC, and the crystal structure and particles morphology of the precursors which were calcined at 600, 800, 1000 ℃ for 3 h were characterized using XRD, SEM technologies. Compared with the solid state reaction of constituent oxides, when the pH value of the precipitating solution was in the range of 9.1~9.5, the LSCCF powders from the precursors caclined at 800 ℃ for 3 h had high purity, homogeneous and single perovskite phase. The electrical conductivity of the LSCCF samples sintered at 1200 ℃ for 3 h, which was measured as a function of temperatures from 100 to 800 ℃ by DC four-probe method in air, decreased with x from 0.05 to 0.20. The value of electrical conductivity was almost equal because of Ca2+, Sr2+ co-dopant resulting in the 'mix effect' while x=0.10 or 0.15. The electrical conductivity of all doped samples was higher than 100 S·cm-1 at intermediate temperatures from 500 to 800 ℃, and there was good compatibility between the LSCCF cathode and Ce0.8Sm0.2O2 electrolyte.
文摘Combustion catalyst La_(0.8)Sr_(0.2)CoO_3 (LSC) is expected to possess relatively high activity for the oxidation of carbon monoxide and many hydrocarbons. If γ-Al_2O_3 is used as its support, cobalt ions can easily react with γ-Al_2O_3 at not very high temperature to form spinel CoAl_2O_4 or spinel-like, which decreases the activity of the combustion catalyst. In this paper, MgAl_2O_4 and CaAl_2O_4 were pre-coated on γ-Al_2O_3 by impregnation respectively, which formed compound support for LSC. It is shown that, when MgAl_2O_4 layer is covered on the surface of MgAl_2O_4 by impregnation, the entering of cobalt ions into γ-Al_2O_3 lattice is restrained, then LSC formed on the surface of MgAl_2O_4, which leads to a good catalytic activity of xylene complete oxidation. But the layer of MgAl_2O_4 should be thick enough to reach 30% (mass fraction) MgO in the support due to large size particle of MgAl_2O_4 crystalline. If polyvinyl alcohol (PVA) is added into the impregnation solution adequately, MgAl_2O_4 particles formed on the surface of γ-Al_2O_3 are getting smaller, and less amount of MgAl_2O_4 is needed to cover up the surface of γ-Al_2O_3. If CaAl_2O_4 layer substituted for MgAl_2O_4, more closed cover is obtained in virtue of fine particles of CaAl_2O_4. The activity examination shows that smaller particles of MgAl_2O_4 or CaAl_2O_4 can be more effective to hinder cobalt ions entering the lattice of γ-Al_2O_3, and better activities will be obtained.