Pheretima,also called“earthworms”,is a well-known animal-derived traditional Chinese medicine that is extensively used in over 50 Chinese patent medicines(CPMs)in Chinese Pharmacopoeia(2020 edition).However,its zool...Pheretima,also called“earthworms”,is a well-known animal-derived traditional Chinese medicine that is extensively used in over 50 Chinese patent medicines(CPMs)in Chinese Pharmacopoeia(2020 edition).However,its zoological origin is unclear,both in the herbal market and CPMs.In this study,a strategy for integrating in-house annotated protein databases constructed from close evolutionary relationship-sourced RNA sequencing data from public archival resources and various sequencing algorithms(restricted search,open search,and de novo)was developed to characterize the phenotype of natural peptides of three major commercial species of Pheretima,including Pheretima aspergillum(PA),Pheretima vulgaris(PV),and Metaphire magna(MM).We identified 10,477 natural peptides in the PA,7,451 in PV,and 5,896 in MM samples.Five specific signature peptides were screened and then validated using synthetic peptides;these demonstrated robust specificity for the authentication of PA,PV,and MM.Finally,all marker peptides were successfully applied to identify the zoological origins of Brain Heart capsules and Xiaohuoluo pills,revealing the inconsistent Pheretima species used in these CPMs.In conclusion,our integrated strategy could be used for the in-depth characterization of natural peptides of other animal-derived traditional Chinese medicines,especially non-model species with poorly annotated protein databases.展开更多
In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both ...In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both scientific research and clinical applications.However,the conventional approach for improving classification accuracy often involves labeling cells with fluorescence,which can lead to potential phototoxicity.This study proposes a label-free in-vivo flow cytometry technique,called dynamic YOLOv4(D-YOLOv4),which improves classification accuracy by integrating absorption intensity fluctuation modulation(AIFM)into YOLOv4 to demodulate the temporal features of moving red blood cells(RBCs)and platelets.Using zebrafish as an experimental model,the D-YOLOv4 method achieved average precisions(APs)of 0.90 for RBCs and 0.64 for thrombocytes(similar to platelets in mammals),resulting in an overall AP of 0.77.These scores notably surpass those attained by alternative network models,thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free in-vivoflow cytometry,which holds promise for diverse in-vivo cell classification applications.展开更多
Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alc...Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alcoholic extracts of the oyster using nano-HPLC-MS/MS analysis,i Umami-Scoring Card Method(i Umami-SCM)database and molecular docking(MD).Sensory evaluation and electronic tongue analysis were further used to confirm their tastes.The threshold of the three peptides ranged from 0.38 to 0.55 mg/m L.MD with umami receptors T1R1/T1R3 indicated that the electrostatic interaction and hydrogen bond interaction were the main forces involved.Besides,the Phe592 and Gln853 of T1R3 were the primary docking site for MD and played an important role in umami intensity.Peptides with two Glu residues at the terminus had stronger umami,especially at the C-terminus.These results contribute to the understanding of umami peptides in oysters and the interaction mechanism between umami peptides and umami receptors.展开更多
Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The ...Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.展开更多
Sesame(Sesamum indicum L.)is an ancient oilseed crop of the Pedaliaceae family with high oil content and potential health benefits.SHI RELATED SEQUENCE(SRS)proteins are the transcription factors(TFs)specific to plants...Sesame(Sesamum indicum L.)is an ancient oilseed crop of the Pedaliaceae family with high oil content and potential health benefits.SHI RELATED SEQUENCE(SRS)proteins are the transcription factors(TFs)specific to plants that contain RING-like zinc finger domain and are associated with the regulation of several physiological and biochemical processes.They also play vital roles in plant growth and development such as root formation,leaf development,floral development,hormone biosynthesis,signal transduction,and biotic and abiotic stress responses.Nevertheless,the SRS gene family was not reported in sesame yet.In this study,identification,molecular characterization,phylogenetic relationship,cis-acting regulatory elements,protein-protein interaction,syntenic relationship,duplication events and expression pattern of SRS genes were analyzed in S.indicum.We identified total six SiSRS genes on seven different linkage groups in the S.indicum genome by comparing with the other species,including the model plant Arabidopsis thaliana.The SiSRS genes showed variation in their structure like2–5 exons and 1–4 introns.Like other species,SiSRS proteins also contained‘RING-like zinc finger'and‘LRP1'domains.Then,the SiSRS genes were clustered into subclasses via phylogenetic analysis with proteins of S.indicum,A.thaliana,and some other plant species.The cis-acting regulatory elements analysis revealed that the promoter region of SiSRS4(SIN_1011561)showed the highest 13 and 16 elements for light-and phytohormone-responses whereas,SiSRS1(SIN_1015187)showed the highest 15 elements for stress-response.The ABREs,or ABA-responsive elements,were found in a maximum of 8 copies in the SiSRS3(SIN 1009100).Moreover,the available RNA-seq based expression of SiSRS genes revealed variation in expression patterns between stress-treated and non-treated samples,especially in drought and salinity conditions in.S.indicum.Two SiSRS genes like SiSRS1(SIN_1015187)and SiSRS5(SIN_1021065),also exhibited variable expression patterns between control vs PEG-treated sesame root samples and three SiSRS genes,including SiSRS1(SIN_1015187),SiSRS2(SIN_1003328)and SiSRS5(SIN_1021065)were responsive to salinity treatments.The present outcomes will encourage more research into the gene expression and functionality analysis of SiSRS genes in S.indicum and other related species.展开更多
Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years...Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years,the need for improved accuracy and reliability in measurement has driven the increasing adoption of in situ characterization techniques.These techniques,such as reflection high-energy electron diffraction,scanning tunneling microscopy,and X-ray photoelectron spectroscopy,allow direct observation of film growth processes in real time without exposing the sample to air,hence offering insights into the growth mechanisms of epitaxial films with controlled properties.By combining multiple in situ characterization techniques with MBE,researchers can better understand film growth processes,realizing novel materials with customized properties and extensive applications.This review aims to overview the benefits and achievements of in situ characterization techniques in MBE and their applications for material science research.In addition,through further analysis of these techniques regarding their challenges and potential solutions,particularly highlighting the assistance of machine learning to correlate in situ characterization with other material information,we hope to provide a guideline for future efforts in the development of novel monitoring and control schemes for MBE growth processes with improved material properties.展开更多
Mercury is a threatening pollutant in food,herein,we developed a Tb^(3+)-nucleic acid probe-based label-free assay for mix-and-read,rapid detection of mercury pollution.The assay utilized the feature of light-up fluor...Mercury is a threatening pollutant in food,herein,we developed a Tb^(3+)-nucleic acid probe-based label-free assay for mix-and-read,rapid detection of mercury pollution.The assay utilized the feature of light-up fluorescence of terbium ions(Tb^(3+))via binding with single-strand DNA.Mercury ion,Hg^(2+)induced thymine(T)-rich DNA strand to form a double-strand structure(T-Hg^(2+)-T),thus leading to fluorescence reduction.Based on the principle,Hg^(2+)can be quantified based on the fluorescence of Tb^(3+),the limit of detection was 0.0689μmol/L and the linear range was 0.1-6.0μmol/L.Due to the specificity of T-Hg^(2+)-T artificial base pair,the assay could distinguish Hg^(2+)from other metal ions.The recovery rate was ranged in 98.71%-101.34%for detecting mercury pollution in three food samples.The assay is low-cost,separation-free and mix-to-read,thus was a competitive tool for detection of mercury pollution to ensure food safety.展开更多
The purpose of this study is to investigate the physicochemical properties of some local varieties of onion (Allium cepa L.) and compare them with an imported variety, all collected in May 2021. Proteins, reducing sug...The purpose of this study is to investigate the physicochemical properties of some local varieties of onion (Allium cepa L.) and compare them with an imported variety, all collected in May 2021. Proteins, reducing sugars, lipids, and polyphenol content were estimated according to the AFNOR standardized methods. The determination of calcium, magnesium, iron, sodium, potassium and phosphorus was performed by atomic absorption spectrophotometer coupled with a CCD detector. The results highlighted an average acidity of 0.377% ± 0.002% lower than the value of the imported variety which is 0.520% ± 0.001%. Local varieties have a pH ranging from 6.35 ± 0.003 to 6.42 ± 0.004, while the variety has a pH of 6.36 ± 0.003. The ash and dry matter contents vary respectively from 4.788% ± 0.004% to 8.253% ± 0.003% and 7.945% ± 0.021% to 11.945% ± 0.007% for the local varieties. Moreover, the imported one has ash and dry matter contents of 5.175% ± 0.007% and 10.035% ± 0.021% respectively. The results show that the protein, reducing sugar and lipid contents in the local onion varieties vary respectively from 2.815 ± 0.000 to 15.634 ± 0.001 g·100 g<sup>-1</sup>;4.691 ± 0.001 to 12.596 ± 0.002 g·100 g<sup>-1</sup> and 0.006 ± 0.001 to 0.050 ± 0.057 g·100 g<sup>-1</sup>. Furthermore, the imported variety has a protein, reducing sugar and lipid content of 5.649 ± 0.002;8.565 ± 0.002 g·100 g<sup>-1</sup> and 0.011 ± 0.010 g·100 g<sup>-1</sup> respectively. The maximum levels of total polyphenols are obtained in the imported variety, Bellani and Gandiol, respectively 9.973 ± 0.001, 4.535 ± 0.002, and 3.425 ± 0.006 mg EAG/g of dry matter. The local varieties have a significant calorific intake of between 35.451 ± 0.001 and 112.980 ± 0.003 kcal·100 g<sup>-1</sup> compared to the imported one with an energy value of 56.953 ± 0.001 kcal·100 g<sup>-1</sup> of dry matter. The bulbs of different onion varieties studied have a fairly high content of mineral elements. The potassium content of local varieties is between 502.16 ± 0.06 mg·100 g<sup>-1</sup> and 582.77 ± 0.04 mg·100 g<sup>-1</sup> while the imported variety has a content of 536.62 ± 1.30 mg·100 g<sup>-1</sup>. They note that the local varieties have a better calcium content (249.75 ± 0.07 to 434.20 ± 0.57 mg·100 g<sup>-1</sup>) and magnesium (142.15 ± 0.07 to 162.60 ± 0.42 mg·100 g<sup>-1</sup>) than the imported variety (229.58 ± 0.04 mg·100 g<sup>-1</sup>) except for the varieties White Grano (228.29 ± 0.01 mg·100 g<sup>-1</sup>) and Rouge Amposta (117.00 ± 0.42 mg·100 g<sup>-1</sup>) respectively. These results reveal that Gandiol, Dayo and Orient F1 are nutritionally found better due to their higher antioxidant property, proteins, carbohydrates, and reducing sugar and should be included in diets to supplement our daily allowance needed by the body.展开更多
Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,t...Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,the assay of Cu^(2+)is important.We integrate ionic imprinting technology(IIT)and structurally colored hydrogel beads to prepare chitosan-based ionically imprinted hydrogel beads(IIHBs)as a low-cost and high-specificity platform for Cu^(2+)detection.The IIHBs have a macroporous microstructure,uniform size,vivid structural color,and magnetic responsiveness.When incubated in solution,IIHBs recognize Cu^(2+)and exhibit a reflective peak change,thereby achieving label-free detection.In addition,benefiting from the IIT,the IIHBs display good specificity and selectivity and have an imprinting factor of 19.14 at 100μmol·L^(-1).These features indicated that the developed IIHBs are promising candidates for Cu^(2+)detection,particularly for the prevention of hearing loss.展开更多
AIM:To identify different metabolites,proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy(PDR)and resistance to anti-vascular endothelial growth factor(VEGF)drugs,and to provide...AIM:To identify different metabolites,proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy(PDR)and resistance to anti-vascular endothelial growth factor(VEGF)drugs,and to provide biomarkers for the diagnosis and treatment of PDR.METHODS:Vitreous specimens from patients with diabetic retinopathy were collected and analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS/MS)analyses based on 4D label-free technology.Statistically differentially expressed proteins(DEPs),Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway representation and protein interactions were analyzed.RESULTS:A total of 12 samples were analyzed.The proteomics results showed that a total of 58 proteins were identified as DEPs,of which 47 proteins were up-regulated and 11 proteins were down-regulated.We found that C1q and tumor necrosis factor related protein 5(C1QTNF5),Clusterin(CLU),tissue inhibitor of metal protease 1(TIMP1)and signal regulatory protein alpha(SIRPα)can all be specifically regulated after aflibercept treatment.GO functional analysis showed that some DEPs are related to changes in inflammatory regulatory pathways caused by PDR.In addition,protein-protein interaction(PPI)network evaluation revealed that TIMP1 plays a central role in neural regulation.In addition,CD47/SIRPαmay become a key target to resolve anti-VEGF drug resistance in PDR.CONCLUSION:Proteomic analysis is an approach of choice to explore the molecular mechanisms of PDR.Our data show that multiple proteins are differentially changed in PDR patients after intravitreal injection of aflibercept,among which C1QTNF5,CLU,TIMP1 and SIRPαmay become targets for future treatment of PDR and resolution of anti-VEGF resistance.展开更多
The study conducted at Ndiebene Gandiol 1 school in Senegal has unveiled serious environmental and public health challenges. The wastewater analysis revealed high levels of Biochemical Oxygen Demand (BOD5), Chemical O...The study conducted at Ndiebene Gandiol 1 school in Senegal has unveiled serious environmental and public health challenges. The wastewater analysis revealed high levels of Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and fecal coliforms, signaling potential risks to the well-being of students and staff. This situation mirrors a wider issue in rural educational settings, where inadequate sanitation persists. Intensive wastewater treatment options are known for their effectiveness against high pollutant loads but are resource-intensive in both energy and cost. Conversely, extensive treatment systems, while requiring more land, provide a sustainable alternative by harnessing natural processes for pollutant removal. The research suggests a hybrid treatment approach could serve the school’s needs, balancing the robust capabilities of intensive methods with the ecological benefits of extensive systems. Such a solution would need to be tailored to the specific environmental, financial, and logistical context of the school, based on comprehensive feasibility studies and stakeholder engagement. This study’s findings underscore the urgency of addressing sanitation in schools, as it is intrinsically linked to the health and academic success of students. Quick, effective, and long-term strategies are vital to secure a healthier and more prosperous future for the youth. With proper implementation, the school can transform its sanitation facilities, setting a precedent for rural educational institutions in Senegal and similar contexts globally.展开更多
The problem of access to quality water is a major challenge, as it has a major impact on the socio-economic conditions of people in developing countries. The water from the islands of Lake Fitri is one of the main sou...The problem of access to quality water is a major challenge, as it has a major impact on the socio-economic conditions of people in developing countries. The water from the islands of Lake Fitri is one of the main sources of drinking water for the population. The aim of this study is to characterise and assess the quality of the water and sediment from the islands (Moudou and Birguime) of Lake Fitri, and to confirm the strains isolated using the PCR method. A total of fifty (50) samples of water and fifty (50) sediments from the islands of Lake Fitri were analyzed. Standard methods of microbiological and biochemical analysis of water and sediments were used. Isolated Enterobacteriaceae strains were characterized by API 20 E and API Staph galleries and Salmonella was confirmed by PCR method. Antibiotic resistance was determined using a technique recommended by the antibiogram committee of the French microbiology society (CA-SFM, 2019). The microbiological results for the water showed an abundance of total aerobic mesophilic flora (TAMF) (4.31 × 106 ± 8.05 × 105 and 5.29 × 106 ± 2.55 × 105) on the Birguime and Moudou islands successively. The microbiological results for the sediment from Birguime and Moudou islands showed an abundance of thermotolerant coliforms (E. coli) (2.05 × 105 ± 5.43 × 104 and 2.27 × 105 ± 3.49 × 104) alternately. The results obtained after incubation of the biochemical tests by the API 20E, API Staph gallery and their numerical profile proposed by the Api software confirmed the contamination. The antibiogram results showed the emergence of certain resistances to the antibiotics Tobramycin, Flucytosine, Amikacin and Teicoplani. The PCR results for Salmonella spp strains were confirmed. As a result, strict monitoring of the water on the various islands of Lake Fitri must be carried out throughout the annual cycle, by specialized personnel, to ensure proper bio-monitoring of these ecosystems.展开更多
Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup...Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup requires first and foremost their characterization. The aim of this study is therefore to determine the main physical and chemical characteristics of rubber latex cup bottom oil. Oil’s physical parameters determination shows that it has a density of 951 kg∙m−3, a kinematic viscosity of 48.57 cSt and a water content of 0.0845%. Chemical parameters, meanwhile, indicate that this cup bottom residue has a fat content of 95.96%, an acid number of 2.805 mg KOH/g and an iodine number of 92.42 g I2/100g. Therefore, rubber latex cup bottom oil can be used in the formulation of biofuels, biolubricants, paints, varnishes, alkyd resins, polishing oils, soaps, and insecticides.展开更多
In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phl...In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phlorotannins(PTN).pH-Responsive nanoparticles were prepared successfully(zein-PTN-CQDs-Fe-~Ⅲ).Further,the formation of composite nanoparticles was confirmed by a series of characterization methods.The zeta-potential and Fourier transform infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form nanoparticles.The encapsulation efficiency(EE)revealed that metal-polyphenol network structure could improve the EE of PTN.Thermogravimetric analysis and differential scanning calorimetry experiment indicated the thermal stability of zein-PTN-CQDs-Fe~Ⅲnanoparticles increased because of metal-polyphenol network structure.The pH-responsive nanoparticles greatly increased the release rate of active substances and achieved targeted release.展开更多
Soft robot incarnates its unique advantages in deep-sea exploration,but grapples with high hydrostatic pressure’s unpredictable impact on its mechanical performances.In our previous work,a self-powered soft robot sho...Soft robot incarnates its unique advantages in deep-sea exploration,but grapples with high hydrostatic pressure’s unpredictable impact on its mechanical performances.In our previous work,a self-powered soft robot showed excellent work performance in the Mariana Trench at a depth of 11000 m,yet experienced notable degradation in deforming capability.Here,we propose a magnetic loading method for characterizing elastomer’s mechanical properties under extremely high hydrostatic pressure of up to 120 MPa.This method facilitates remote loading and enables in-situ observation,so that the dimensions and deformation at high hydrostatic pressure are obtained and used for calculations.The results reveal that the Young’s modulus of Polydimethylsiloxane(PDMS)monotonously increases with pressure.It is found that the relative increase in Young’s modulus is determined by its initial value,which is 8% for an initial Young’s modulus of 2200 kPa and 38% for 660 kPa.The relation between initial Young’s modulus and relevant increase can be fitted by an exponential function.The bulk modulus of PDMS is about 1.4 GPa at 20℃ and is barely affected by hydrostatic pressure.The method can quantify alterations in the mechanical properties of elastomers induced by hydrostatic pressure,and provide guidance for the design of soft robots which serve in extreme pressure environment.展开更多
Internode number and length are the foundation to constitute plant height, ear height and the above-ground spatial structure of maize plant. In this study, segregating populations were constructed between EHel with ex...Internode number and length are the foundation to constitute plant height, ear height and the above-ground spatial structure of maize plant. In this study, segregating populations were constructed between EHel with extremely low ear height and B73. Through the SNP-based genotyping and phenotypic characterization, 13 QTL distributed on the chromosomes (Chrs) of Chr1, Chr2, Chr5-Chr8 were detected for four traits of internode no. above ear (INa), average internode length above ear (ILaa), internode no. below ear (INb), and average internode length below ear (ILab). Phenotypic variation explained (PVE) by a single QTL ranged from 6.82% (qILab2-2) to 12.99% (qILaa5). Zm00001d016823 within the physical region of qILaa5, the major QTL for ILaa with the largest PVE was determined as the candidate through the genomic annotation and sequence alignment between EHel and B73. Product of Zm00001d016823 was annotated as a WEB family protein homogenous to At1g75720. qRT-PCR assay showed that Zm00001d016823 highly expressed within the tissue of internode, exhibiting statistically higher expression levels among internodes of IN4 to IN7 in EHel than those in B73 (P Zm00001d016823 might provide novel insight into molecular mechanism beyond phytohormones controlling internode development in maize.展开更多
The characterization of a particle ensemble(rather than a single particle)is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm.However,many of...The characterization of a particle ensemble(rather than a single particle)is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm.However,many of such bulk characterizations as loosely-packed density(rbl),minimum fluidization velocity(Umf),sphericity(4),discharge rate through orifice(q),angle of repose(b),and segregation index(S),were found to be poorly reproducible,making the reported results seldom comparable.Since these bulk characterizations started from the packed state of particles,such poor reproducibility was ascribed to the polymorphism of packed particles in this work.We observed that in the fluidized bed,the settled/packed state of particles varied monotonously with the settling rate(a)from complete fluidization to zero.This phenomenon confirmed the polymorphic characteristic of packed particles and further enabled us to systematically disclose/clarify its influences on the aforementioned bulk characterizations.Such influences could be comprehensively and intuitively reflected by the impacts induced by a.With the decrease of a,rbl,4 and q first increased,then decreased,and finally leveled off while Umf and b showed an opposite trend.On the other hand,S first increased and then remained invariant.As per these findings and definitions of these bulk characterizations,benchmarks were indicated to unify the selection of settled state among future scholars and further make their outcomes become fairly comparable.Additionally,most packed states of the particle ensemble were proved to be metastable with their formation and behavior being identical to those of the amorphous state.展开更多
To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experimen...To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experiments were conducted under both dynamic and static loading conditions,allowing us to gather the micro-mechanical parameters of coal for further analysis of its micro-mechanical heterogeneity using the box counting statistical method and the Weibull model.The research findings indicate that the load–displacement curves of the coal mass under the two different loading modes exhibit noticeable discreteness.This can be attributed to the stress concentration phenomenon caused by variations in the mechanical properties of the micro-units during the loading process of the coal mass.Consequently,there are significant fluctuations in the micro-mechanical parameters of the coal mass.Moreover,the mechanical heterogeneity of the coal at the nanoscale was confirmed based on the calculation results of the standard deviation coefficient and Weibull modulus of the coal body’s micromechanical parameters.These results reveal the influence of microstructural defects and minerals on the uniformity of the stress field distribution within the loaded coal body,as well as on the ductility characteristics of the micro-defect structure.Furthermore,there is a pronounced heterogeneity in the micromechanical parameters.Furthermore,we have established a relationship between the macro and micro elastic modulus of coal by applying the Mori-Tanaka homogenization method.This relationship holds great significance for revealing the micro-mechanical failure mechanism of coal.展开更多
With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always...With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.展开更多
Metal-ion batteries(MIBs),including alkali metal-ion(Li^(+),Na^(+),and K^(3)),multi-valent metal-ion(Zn^(2+),Mg^(2+),and Al^(3+)),metal-air,and metal-sulfur batteries,play an indispensable role in electrochemical ener...Metal-ion batteries(MIBs),including alkali metal-ion(Li^(+),Na^(+),and K^(3)),multi-valent metal-ion(Zn^(2+),Mg^(2+),and Al^(3+)),metal-air,and metal-sulfur batteries,play an indispensable role in electrochemical energy storage.However,the performance of MIBs is significantly influenced by numerous variables,resulting in multi-dimensional and long-term challenges in the field of battery research and performance enhancement.Machine learning(ML),with its capability to solve intricate tasks and perform robust data processing,is now catalyzing a revolutionary transformation in the development of MIB materials and devices.In this review,we summarize the utilization of ML algorithms that have expedited research on MIBs over the past five years.We present an extensive overview of existing algorithms,elucidating their details,advantages,and limitations in various applications,which encompass electrode screening,material property prediction,electrolyte formulation design,electrode material characterization,manufacturing parameter optimization,and real-time battery status monitoring.Finally,we propose potential solutions and future directions for the application of ML in advancing MIB development.展开更多
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.:82130111)the National Natural Science Foundation of China(Grant No.:81803716)+1 种基金the Qi-Huang Chief Scientist Project of the National Administration of Traditional Chinese Medicine,China(2020)the SIMM-SHUTCM Traditional Chinese Medicine Innovation Joint Research Program,China(Grant No.:E2G809H).
文摘Pheretima,also called“earthworms”,is a well-known animal-derived traditional Chinese medicine that is extensively used in over 50 Chinese patent medicines(CPMs)in Chinese Pharmacopoeia(2020 edition).However,its zoological origin is unclear,both in the herbal market and CPMs.In this study,a strategy for integrating in-house annotated protein databases constructed from close evolutionary relationship-sourced RNA sequencing data from public archival resources and various sequencing algorithms(restricted search,open search,and de novo)was developed to characterize the phenotype of natural peptides of three major commercial species of Pheretima,including Pheretima aspergillum(PA),Pheretima vulgaris(PV),and Metaphire magna(MM).We identified 10,477 natural peptides in the PA,7,451 in PV,and 5,896 in MM samples.Five specific signature peptides were screened and then validated using synthetic peptides;these demonstrated robust specificity for the authentication of PA,PV,and MM.Finally,all marker peptides were successfully applied to identify the zoological origins of Brain Heart capsules and Xiaohuoluo pills,revealing the inconsistent Pheretima species used in these CPMs.In conclusion,our integrated strategy could be used for the in-depth characterization of natural peptides of other animal-derived traditional Chinese medicines,especially non-model species with poorly annotated protein databases.
基金supported by the National Natural Science Foundation of China(62075042 and 62205060)the Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(2020B1212030010)+1 种基金Fund for Research on National Major Research Instruments of China(Grant No.62027824)Fund for Science and Technology Innovation Cultivation of Guangdong University Students(No.pdjh2022b0543).
文摘In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both scientific research and clinical applications.However,the conventional approach for improving classification accuracy often involves labeling cells with fluorescence,which can lead to potential phototoxicity.This study proposes a label-free in-vivo flow cytometry technique,called dynamic YOLOv4(D-YOLOv4),which improves classification accuracy by integrating absorption intensity fluctuation modulation(AIFM)into YOLOv4 to demodulate the temporal features of moving red blood cells(RBCs)and platelets.Using zebrafish as an experimental model,the D-YOLOv4 method achieved average precisions(APs)of 0.90 for RBCs and 0.64 for thrombocytes(similar to platelets in mammals),resulting in an overall AP of 0.77.These scores notably surpass those attained by alternative network models,thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free in-vivoflow cytometry,which holds promise for diverse in-vivo cell classification applications.
基金supported by the National Key Research and Development Program of China:Investigate the mechanism of formation and control technologies of Chinese traditional and ethnic food quality(2021YFD2100100)。
文摘Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alcoholic extracts of the oyster using nano-HPLC-MS/MS analysis,i Umami-Scoring Card Method(i Umami-SCM)database and molecular docking(MD).Sensory evaluation and electronic tongue analysis were further used to confirm their tastes.The threshold of the three peptides ranged from 0.38 to 0.55 mg/m L.MD with umami receptors T1R1/T1R3 indicated that the electrostatic interaction and hydrogen bond interaction were the main forces involved.Besides,the Phe592 and Gln853 of T1R3 were the primary docking site for MD and played an important role in umami intensity.Peptides with two Glu residues at the terminus had stronger umami,especially at the C-terminus.These results contribute to the understanding of umami peptides in oysters and the interaction mechanism between umami peptides and umami receptors.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. AE89991/403)National Natural Science Foundation of China (Grant No. 52005262)+1 种基金Natural Science Foundation of Jiangsu Province (BK20202007)National Key Research and Development Program of China (2022YFB4600800)。
文摘Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.
文摘Sesame(Sesamum indicum L.)is an ancient oilseed crop of the Pedaliaceae family with high oil content and potential health benefits.SHI RELATED SEQUENCE(SRS)proteins are the transcription factors(TFs)specific to plants that contain RING-like zinc finger domain and are associated with the regulation of several physiological and biochemical processes.They also play vital roles in plant growth and development such as root formation,leaf development,floral development,hormone biosynthesis,signal transduction,and biotic and abiotic stress responses.Nevertheless,the SRS gene family was not reported in sesame yet.In this study,identification,molecular characterization,phylogenetic relationship,cis-acting regulatory elements,protein-protein interaction,syntenic relationship,duplication events and expression pattern of SRS genes were analyzed in S.indicum.We identified total six SiSRS genes on seven different linkage groups in the S.indicum genome by comparing with the other species,including the model plant Arabidopsis thaliana.The SiSRS genes showed variation in their structure like2–5 exons and 1–4 introns.Like other species,SiSRS proteins also contained‘RING-like zinc finger'and‘LRP1'domains.Then,the SiSRS genes were clustered into subclasses via phylogenetic analysis with proteins of S.indicum,A.thaliana,and some other plant species.The cis-acting regulatory elements analysis revealed that the promoter region of SiSRS4(SIN_1011561)showed the highest 13 and 16 elements for light-and phytohormone-responses whereas,SiSRS1(SIN_1015187)showed the highest 15 elements for stress-response.The ABREs,or ABA-responsive elements,were found in a maximum of 8 copies in the SiSRS3(SIN 1009100).Moreover,the available RNA-seq based expression of SiSRS genes revealed variation in expression patterns between stress-treated and non-treated samples,especially in drought and salinity conditions in.S.indicum.Two SiSRS genes like SiSRS1(SIN_1015187)and SiSRS5(SIN_1021065),also exhibited variable expression patterns between control vs PEG-treated sesame root samples and three SiSRS genes,including SiSRS1(SIN_1015187),SiSRS2(SIN_1003328)and SiSRS5(SIN_1021065)were responsive to salinity treatments.The present outcomes will encourage more research into the gene expression and functionality analysis of SiSRS genes in S.indicum and other related species.
基金supported by the National Key R&D Program of China(Grant No.2021YFB2206503)National Natural Science Foundation of China(Grant No.62274159)+1 种基金CAS Project for Young Scientists in Basic Research(Grant No.YSBR-056)the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant No.XDB43010102).
文摘Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years,the need for improved accuracy and reliability in measurement has driven the increasing adoption of in situ characterization techniques.These techniques,such as reflection high-energy electron diffraction,scanning tunneling microscopy,and X-ray photoelectron spectroscopy,allow direct observation of film growth processes in real time without exposing the sample to air,hence offering insights into the growth mechanisms of epitaxial films with controlled properties.By combining multiple in situ characterization techniques with MBE,researchers can better understand film growth processes,realizing novel materials with customized properties and extensive applications.This review aims to overview the benefits and achievements of in situ characterization techniques in MBE and their applications for material science research.In addition,through further analysis of these techniques regarding their challenges and potential solutions,particularly highlighting the assistance of machine learning to correlate in situ characterization with other material information,we hope to provide a guideline for future efforts in the development of novel monitoring and control schemes for MBE growth processes with improved material properties.
基金financially supported by National Natural Science Foundation of China(22074100)the Young Elite Scientist Sponsorship Program by CAST(YESS20200036)+3 种基金the Researchers Supporting Project Number RSP-2021/138King Saud University,Riyadh,Saudi ArabiaTechnological Innovation R&D Project of Chengdu City(2019-YF05-31702266-SN)Sichuan University-Panzhihua City joint Project(2020CDPZH-5)。
文摘Mercury is a threatening pollutant in food,herein,we developed a Tb^(3+)-nucleic acid probe-based label-free assay for mix-and-read,rapid detection of mercury pollution.The assay utilized the feature of light-up fluorescence of terbium ions(Tb^(3+))via binding with single-strand DNA.Mercury ion,Hg^(2+)induced thymine(T)-rich DNA strand to form a double-strand structure(T-Hg^(2+)-T),thus leading to fluorescence reduction.Based on the principle,Hg^(2+)can be quantified based on the fluorescence of Tb^(3+),the limit of detection was 0.0689μmol/L and the linear range was 0.1-6.0μmol/L.Due to the specificity of T-Hg^(2+)-T artificial base pair,the assay could distinguish Hg^(2+)from other metal ions.The recovery rate was ranged in 98.71%-101.34%for detecting mercury pollution in three food samples.The assay is low-cost,separation-free and mix-to-read,thus was a competitive tool for detection of mercury pollution to ensure food safety.
文摘The purpose of this study is to investigate the physicochemical properties of some local varieties of onion (Allium cepa L.) and compare them with an imported variety, all collected in May 2021. Proteins, reducing sugars, lipids, and polyphenol content were estimated according to the AFNOR standardized methods. The determination of calcium, magnesium, iron, sodium, potassium and phosphorus was performed by atomic absorption spectrophotometer coupled with a CCD detector. The results highlighted an average acidity of 0.377% ± 0.002% lower than the value of the imported variety which is 0.520% ± 0.001%. Local varieties have a pH ranging from 6.35 ± 0.003 to 6.42 ± 0.004, while the variety has a pH of 6.36 ± 0.003. The ash and dry matter contents vary respectively from 4.788% ± 0.004% to 8.253% ± 0.003% and 7.945% ± 0.021% to 11.945% ± 0.007% for the local varieties. Moreover, the imported one has ash and dry matter contents of 5.175% ± 0.007% and 10.035% ± 0.021% respectively. The results show that the protein, reducing sugar and lipid contents in the local onion varieties vary respectively from 2.815 ± 0.000 to 15.634 ± 0.001 g·100 g<sup>-1</sup>;4.691 ± 0.001 to 12.596 ± 0.002 g·100 g<sup>-1</sup> and 0.006 ± 0.001 to 0.050 ± 0.057 g·100 g<sup>-1</sup>. Furthermore, the imported variety has a protein, reducing sugar and lipid content of 5.649 ± 0.002;8.565 ± 0.002 g·100 g<sup>-1</sup> and 0.011 ± 0.010 g·100 g<sup>-1</sup> respectively. The maximum levels of total polyphenols are obtained in the imported variety, Bellani and Gandiol, respectively 9.973 ± 0.001, 4.535 ± 0.002, and 3.425 ± 0.006 mg EAG/g of dry matter. The local varieties have a significant calorific intake of between 35.451 ± 0.001 and 112.980 ± 0.003 kcal·100 g<sup>-1</sup> compared to the imported one with an energy value of 56.953 ± 0.001 kcal·100 g<sup>-1</sup> of dry matter. The bulbs of different onion varieties studied have a fairly high content of mineral elements. The potassium content of local varieties is between 502.16 ± 0.06 mg·100 g<sup>-1</sup> and 582.77 ± 0.04 mg·100 g<sup>-1</sup> while the imported variety has a content of 536.62 ± 1.30 mg·100 g<sup>-1</sup>. They note that the local varieties have a better calcium content (249.75 ± 0.07 to 434.20 ± 0.57 mg·100 g<sup>-1</sup>) and magnesium (142.15 ± 0.07 to 162.60 ± 0.42 mg·100 g<sup>-1</sup>) than the imported variety (229.58 ± 0.04 mg·100 g<sup>-1</sup>) except for the varieties White Grano (228.29 ± 0.01 mg·100 g<sup>-1</sup>) and Rouge Amposta (117.00 ± 0.42 mg·100 g<sup>-1</sup>) respectively. These results reveal that Gandiol, Dayo and Orient F1 are nutritionally found better due to their higher antioxidant property, proteins, carbohydrates, and reducing sugar and should be included in diets to supplement our daily allowance needed by the body.
基金supported by grants from the National Key Research and Development Program of China(2021YFA1101300,2021YFA1101800,and 2020YFA0112503)the National Natural Science Foundation of China(82030029,81970882,92149304,and 22302231)+5 种基金the Science and Technology Department of Sichuan Province(2021YFS0371)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011986)the Shenzhen Fundamental Research Program(JCYJ20190814093401920,JCYJ20210324125608022,JCYJ20190813152616459,and JCYJ20190808120405672)the Futian Healthcare Research Project(FTWS2022013 and FTWS2023080)the Open Research Fund of State Key Laboratory of Genetic Engineering,Fudan University(SKLGE-2104)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(23qnpy153)。
文摘Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,the assay of Cu^(2+)is important.We integrate ionic imprinting technology(IIT)and structurally colored hydrogel beads to prepare chitosan-based ionically imprinted hydrogel beads(IIHBs)as a low-cost and high-specificity platform for Cu^(2+)detection.The IIHBs have a macroporous microstructure,uniform size,vivid structural color,and magnetic responsiveness.When incubated in solution,IIHBs recognize Cu^(2+)and exhibit a reflective peak change,thereby achieving label-free detection.In addition,benefiting from the IIT,the IIHBs display good specificity and selectivity and have an imprinting factor of 19.14 at 100μmol·L^(-1).These features indicated that the developed IIHBs are promising candidates for Cu^(2+)detection,particularly for the prevention of hearing loss.
基金Supported by Tianjin Key Medical Discipline Specialty Construction Project(No.TJYXZDXK-016A)Henan Provincial Department of Science and Technology(No.LHGJ20200802).
文摘AIM:To identify different metabolites,proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy(PDR)and resistance to anti-vascular endothelial growth factor(VEGF)drugs,and to provide biomarkers for the diagnosis and treatment of PDR.METHODS:Vitreous specimens from patients with diabetic retinopathy were collected and analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS/MS)analyses based on 4D label-free technology.Statistically differentially expressed proteins(DEPs),Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway representation and protein interactions were analyzed.RESULTS:A total of 12 samples were analyzed.The proteomics results showed that a total of 58 proteins were identified as DEPs,of which 47 proteins were up-regulated and 11 proteins were down-regulated.We found that C1q and tumor necrosis factor related protein 5(C1QTNF5),Clusterin(CLU),tissue inhibitor of metal protease 1(TIMP1)and signal regulatory protein alpha(SIRPα)can all be specifically regulated after aflibercept treatment.GO functional analysis showed that some DEPs are related to changes in inflammatory regulatory pathways caused by PDR.In addition,protein-protein interaction(PPI)network evaluation revealed that TIMP1 plays a central role in neural regulation.In addition,CD47/SIRPαmay become a key target to resolve anti-VEGF drug resistance in PDR.CONCLUSION:Proteomic analysis is an approach of choice to explore the molecular mechanisms of PDR.Our data show that multiple proteins are differentially changed in PDR patients after intravitreal injection of aflibercept,among which C1QTNF5,CLU,TIMP1 and SIRPαmay become targets for future treatment of PDR and resolution of anti-VEGF resistance.
文摘The study conducted at Ndiebene Gandiol 1 school in Senegal has unveiled serious environmental and public health challenges. The wastewater analysis revealed high levels of Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and fecal coliforms, signaling potential risks to the well-being of students and staff. This situation mirrors a wider issue in rural educational settings, where inadequate sanitation persists. Intensive wastewater treatment options are known for their effectiveness against high pollutant loads but are resource-intensive in both energy and cost. Conversely, extensive treatment systems, while requiring more land, provide a sustainable alternative by harnessing natural processes for pollutant removal. The research suggests a hybrid treatment approach could serve the school’s needs, balancing the robust capabilities of intensive methods with the ecological benefits of extensive systems. Such a solution would need to be tailored to the specific environmental, financial, and logistical context of the school, based on comprehensive feasibility studies and stakeholder engagement. This study’s findings underscore the urgency of addressing sanitation in schools, as it is intrinsically linked to the health and academic success of students. Quick, effective, and long-term strategies are vital to secure a healthier and more prosperous future for the youth. With proper implementation, the school can transform its sanitation facilities, setting a precedent for rural educational institutions in Senegal and similar contexts globally.
文摘The problem of access to quality water is a major challenge, as it has a major impact on the socio-economic conditions of people in developing countries. The water from the islands of Lake Fitri is one of the main sources of drinking water for the population. The aim of this study is to characterise and assess the quality of the water and sediment from the islands (Moudou and Birguime) of Lake Fitri, and to confirm the strains isolated using the PCR method. A total of fifty (50) samples of water and fifty (50) sediments from the islands of Lake Fitri were analyzed. Standard methods of microbiological and biochemical analysis of water and sediments were used. Isolated Enterobacteriaceae strains were characterized by API 20 E and API Staph galleries and Salmonella was confirmed by PCR method. Antibiotic resistance was determined using a technique recommended by the antibiogram committee of the French microbiology society (CA-SFM, 2019). The microbiological results for the water showed an abundance of total aerobic mesophilic flora (TAMF) (4.31 × 106 ± 8.05 × 105 and 5.29 × 106 ± 2.55 × 105) on the Birguime and Moudou islands successively. The microbiological results for the sediment from Birguime and Moudou islands showed an abundance of thermotolerant coliforms (E. coli) (2.05 × 105 ± 5.43 × 104 and 2.27 × 105 ± 3.49 × 104) alternately. The results obtained after incubation of the biochemical tests by the API 20E, API Staph gallery and their numerical profile proposed by the Api software confirmed the contamination. The antibiogram results showed the emergence of certain resistances to the antibiotics Tobramycin, Flucytosine, Amikacin and Teicoplani. The PCR results for Salmonella spp strains were confirmed. As a result, strict monitoring of the water on the various islands of Lake Fitri must be carried out throughout the annual cycle, by specialized personnel, to ensure proper bio-monitoring of these ecosystems.
文摘Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup requires first and foremost their characterization. The aim of this study is therefore to determine the main physical and chemical characteristics of rubber latex cup bottom oil. Oil’s physical parameters determination shows that it has a density of 951 kg∙m−3, a kinematic viscosity of 48.57 cSt and a water content of 0.0845%. Chemical parameters, meanwhile, indicate that this cup bottom residue has a fat content of 95.96%, an acid number of 2.805 mg KOH/g and an iodine number of 92.42 g I2/100g. Therefore, rubber latex cup bottom oil can be used in the formulation of biofuels, biolubricants, paints, varnishes, alkyd resins, polishing oils, soaps, and insecticides.
基金supported by the National Key R&D Program of China (2018YFD0901106)the Wenzhou Major Science and Technology Project (ZN2021002)the Ningbo“3315 series program”for high-level talents (2020B-34-G)。
文摘In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phlorotannins(PTN).pH-Responsive nanoparticles were prepared successfully(zein-PTN-CQDs-Fe-~Ⅲ).Further,the formation of composite nanoparticles was confirmed by a series of characterization methods.The zeta-potential and Fourier transform infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form nanoparticles.The encapsulation efficiency(EE)revealed that metal-polyphenol network structure could improve the EE of PTN.Thermogravimetric analysis and differential scanning calorimetry experiment indicated the thermal stability of zein-PTN-CQDs-Fe~Ⅲnanoparticles increased because of metal-polyphenol network structure.The pH-responsive nanoparticles greatly increased the release rate of active substances and achieved targeted release.
基金supported in part by the National Natural Science Foundation of China(52205424)in part by National Natural Science Foundation of China(T2125009,92048302)+2 种基金in part by Laoshan laboratory(Grant No.LSKJ202205300)in part by‘Pioneer’R&D Program of Zhejiang(Grant No.2023C03007)in part by the Zhejiang Provincial Natural Science Foundation of China(LY23A020001).
文摘Soft robot incarnates its unique advantages in deep-sea exploration,but grapples with high hydrostatic pressure’s unpredictable impact on its mechanical performances.In our previous work,a self-powered soft robot showed excellent work performance in the Mariana Trench at a depth of 11000 m,yet experienced notable degradation in deforming capability.Here,we propose a magnetic loading method for characterizing elastomer’s mechanical properties under extremely high hydrostatic pressure of up to 120 MPa.This method facilitates remote loading and enables in-situ observation,so that the dimensions and deformation at high hydrostatic pressure are obtained and used for calculations.The results reveal that the Young’s modulus of Polydimethylsiloxane(PDMS)monotonously increases with pressure.It is found that the relative increase in Young’s modulus is determined by its initial value,which is 8% for an initial Young’s modulus of 2200 kPa and 38% for 660 kPa.The relation between initial Young’s modulus and relevant increase can be fitted by an exponential function.The bulk modulus of PDMS is about 1.4 GPa at 20℃ and is barely affected by hydrostatic pressure.The method can quantify alterations in the mechanical properties of elastomers induced by hydrostatic pressure,and provide guidance for the design of soft robots which serve in extreme pressure environment.
文摘Internode number and length are the foundation to constitute plant height, ear height and the above-ground spatial structure of maize plant. In this study, segregating populations were constructed between EHel with extremely low ear height and B73. Through the SNP-based genotyping and phenotypic characterization, 13 QTL distributed on the chromosomes (Chrs) of Chr1, Chr2, Chr5-Chr8 were detected for four traits of internode no. above ear (INa), average internode length above ear (ILaa), internode no. below ear (INb), and average internode length below ear (ILab). Phenotypic variation explained (PVE) by a single QTL ranged from 6.82% (qILab2-2) to 12.99% (qILaa5). Zm00001d016823 within the physical region of qILaa5, the major QTL for ILaa with the largest PVE was determined as the candidate through the genomic annotation and sequence alignment between EHel and B73. Product of Zm00001d016823 was annotated as a WEB family protein homogenous to At1g75720. qRT-PCR assay showed that Zm00001d016823 highly expressed within the tissue of internode, exhibiting statistically higher expression levels among internodes of IN4 to IN7 in EHel than those in B73 (P Zm00001d016823 might provide novel insight into molecular mechanism beyond phytohormones controlling internode development in maize.
基金supported by Shandong Provincial Natural Science Foundation(Project ZR2023MB038)Youth Innovation Team Program of Shandong Higher Education Institution(2022KJ156).
文摘The characterization of a particle ensemble(rather than a single particle)is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm.However,many of such bulk characterizations as loosely-packed density(rbl),minimum fluidization velocity(Umf),sphericity(4),discharge rate through orifice(q),angle of repose(b),and segregation index(S),were found to be poorly reproducible,making the reported results seldom comparable.Since these bulk characterizations started from the packed state of particles,such poor reproducibility was ascribed to the polymorphism of packed particles in this work.We observed that in the fluidized bed,the settled/packed state of particles varied monotonously with the settling rate(a)from complete fluidization to zero.This phenomenon confirmed the polymorphic characteristic of packed particles and further enabled us to systematically disclose/clarify its influences on the aforementioned bulk characterizations.Such influences could be comprehensively and intuitively reflected by the impacts induced by a.With the decrease of a,rbl,4 and q first increased,then decreased,and finally leveled off while Umf and b showed an opposite trend.On the other hand,S first increased and then remained invariant.As per these findings and definitions of these bulk characterizations,benchmarks were indicated to unify the selection of settled state among future scholars and further make their outcomes become fairly comparable.Additionally,most packed states of the particle ensemble were proved to be metastable with their formation and behavior being identical to those of the amorphous state.
基金Projects(U23B2093,52274245)supported by the National Natural Science Foundation of ChinaProject(KFJJ22-15M)supported by the Opening Project of State Key Laboratory of Explosion Science and Technology,China。
文摘To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experiments were conducted under both dynamic and static loading conditions,allowing us to gather the micro-mechanical parameters of coal for further analysis of its micro-mechanical heterogeneity using the box counting statistical method and the Weibull model.The research findings indicate that the load–displacement curves of the coal mass under the two different loading modes exhibit noticeable discreteness.This can be attributed to the stress concentration phenomenon caused by variations in the mechanical properties of the micro-units during the loading process of the coal mass.Consequently,there are significant fluctuations in the micro-mechanical parameters of the coal mass.Moreover,the mechanical heterogeneity of the coal at the nanoscale was confirmed based on the calculation results of the standard deviation coefficient and Weibull modulus of the coal body’s micromechanical parameters.These results reveal the influence of microstructural defects and minerals on the uniformity of the stress field distribution within the loaded coal body,as well as on the ductility characteristics of the micro-defect structure.Furthermore,there is a pronounced heterogeneity in the micromechanical parameters.Furthermore,we have established a relationship between the macro and micro elastic modulus of coal by applying the Mori-Tanaka homogenization method.This relationship holds great significance for revealing the micro-mechanical failure mechanism of coal.
基金supported by the National Natural Science Foundation of China(No.22209027)the Shenzhen Science and Technology Program(No.JCYJ20220530142806015 and No.JCYJ20220818101008018)+1 种基金the Shenzhen“Pengcheng Peacock Program’the Tsinghua SIGS Cross-disciplinary Research and Innovation Fund(No.JC2022002)。
文摘With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.
基金supported by the National Natural Science Foundation of China(52203364,52188101,52020105010)the National Key R&D Program of China(2021YFB3800300,2022YFB3803400)+2 种基金the Strategic Priority Research Program of Chinese Academy of Science(XDA22010602)the China Postdoctoral Science Foundation(2022M713214)the China National Postdoctoral Program for Innovative Talents(BX2021321)。
文摘Metal-ion batteries(MIBs),including alkali metal-ion(Li^(+),Na^(+),and K^(3)),multi-valent metal-ion(Zn^(2+),Mg^(2+),and Al^(3+)),metal-air,and metal-sulfur batteries,play an indispensable role in electrochemical energy storage.However,the performance of MIBs is significantly influenced by numerous variables,resulting in multi-dimensional and long-term challenges in the field of battery research and performance enhancement.Machine learning(ML),with its capability to solve intricate tasks and perform robust data processing,is now catalyzing a revolutionary transformation in the development of MIB materials and devices.In this review,we summarize the utilization of ML algorithms that have expedited research on MIBs over the past five years.We present an extensive overview of existing algorithms,elucidating their details,advantages,and limitations in various applications,which encompass electrode screening,material property prediction,electrolyte formulation design,electrode material characterization,manufacturing parameter optimization,and real-time battery status monitoring.Finally,we propose potential solutions and future directions for the application of ML in advancing MIB development.