Lactobacillus rhamnosus(Rh)and Lactobacillus reuteri(Re)are well-known probiotic species in inflammatory bowel disease(IBD)research.The variations between these species’efficacy against colitis,and their model of act...Lactobacillus rhamnosus(Rh)and Lactobacillus reuteri(Re)are well-known probiotic species in inflammatory bowel disease(IBD)research.The variations between these species’efficacy against colitis,and their model of action in this regard,are intriguing and enable treatment to be individually tailored to patients.In this study,four strains each of Rh and Re were isolated from fecal samples and their draft genomes were sequenced.The anti-colitis activities of both strains involved various aspects of intestinal immune,physical,chemical,and biological barrier function.Strikingly,the tested strains exhibited considerable interspecies and intraspecies specificity in colitis amelioration.Rh strains significantly outperformed Re strains in terms of short-chain fatty acid synthesis.Nevertheless,Re strains were more effective than Rh strains in inhibiting production of inflammatory factors;promoting production of intestinal mucus,antimicrobial peptides,and tight junction proteins;and supporting the stem cell compartment.This accounts for the anti-colitis outcomes of Re strains being superior to those of Rh strains.In addition,the effective Rh and Re strains were found to express high concentrations of specific carbohydrate metabolism-and prophage-related genes,respectively.Taken together,the results of this study could assist researchers in developing effective therapies for IBD.展开更多
The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological technique...The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological techniques (30 Bacillus and 30 Lactobacillus) and the ability to produce biosurfactants was demonstrated by a hydrocarbon emulsification index (E24). The emulsification indexes (E24) varied from 9% to 100% for Bacillus and from 33% to 100% for Lactobacillus as well. The antagonistic assay showed that biosurfactants were able to inhibit the formation of biofilms and growth of pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella typhirium, Shigella boydii and Proteus mirabilis. The biosurfactant consortium (BioC) from Bacillus consortium and from Lactobacillus was able to inhibit biofilm formation and the pathogens growth. The BioC was stable to alkaline pH and the temperatures stability of Biosurfactant was ranging from 50°C to 90°C. The soap was made by the cold saponification process using one biosurfactant consortium formulated. This soap has a pH of 10 and showed good cleaning power and good foam stability. Similarly, the soap showed good antiseptic power and disinfection power against all pathogens tested. Handwashing is critical to preventing disease transmission. The persistence of pathogens in waste water was evaluated. The BioS produced showed good disinfection power against all pathogens tested. The valor of reduction on the hands and in the waste water was significantly more than compared to the control soaps used. This soap could be used in the prevention, fighting, and treatment of bacterial and viral infections.展开更多
This experiment was conducted to determine the performance of heat-stressed layers fed a diet containing the probiotic Lactobacillus plantarum RS5 or its products of fermentation (postbiotics). Twenty-week-old Isa Whi...This experiment was conducted to determine the performance of heat-stressed layers fed a diet containing the probiotic Lactobacillus plantarum RS5 or its products of fermentation (postbiotics). Twenty-week-old Isa White layers, were subdivided into six treatments of 32 individually caged birds. Half of the birds were reared under regular temperature conditions, while the other half was subjected to cyclic daily heat stress. Layers were offered one of three diets: 1) Control;2) Control + Lactobacillus plantarum RS5 probiotic;3) Control + Lactobacillus plantarum RS5 postbiotics. Birds were tested for performance and visceral organ development for 5 months. Heat stress negatively affected the birds’ feed intake, egg weight, shell weight percentage, Haugh unit, shell thickness, yolk color, body weight and spleen weight percentage. Postbiotics significantly increased egg production (p < 0.05) in comparison to the control and the probiotic fed group (94.8% vs 92.6% vs 93.1%, respectively). Birds under probiotic or postbiotic diet showed a significantly higher (p < 0.05) feed intake and egg weight, although the probiotic had a more pronounced and gradual effect. Specific gravity, yolk weight percentage and shell thickness didn’t show differences among dietary groups. The Haugh Unit was significantly higher (p < 0.05) in probiotic group which also showed a significantly lower yolk color index (p < 0.05). The different feed treatments did not impact the bird’s viscera weight percentage, except for the ileum that was significantly lower (p < 0.05) under postbiotic supplementation. Both probiotics and postbiotics could be used as a potential growth promoters and might alleviate heat stress impact in poultry industry.展开更多
Human normal flora is a source of probiotics.The safety characteristics of a specific isolate determine its application in foods or drugs.The food-borne-pathogen antagonist strain Lactobacillus gasseri HMV18 is one of...Human normal flora is a source of probiotics.The safety characteristics of a specific isolate determine its application in foods or drugs.The food-borne-pathogen antagonist strain Lactobacillus gasseri HMV18 is one of the isolates from normal human flora.In this work,we assessed the in vitro pH tolerance,bile tolerance,biogenic amine production,mucin utilization,and safety of in vivo administration to mice to evaluate general health,organ-body weight index,organ histopathological change,whether L.gasseri HMV18 can colonize in the gut or modulate the gut microbiota after oral administration.The results suggest that L.gasseri HMV18 can tolerate pH 3 for 2 h,3%bile for 3 h,biogenic amine negative,mucin usage negative,does not encode verified toxins,and cause no visible change in mice's organs.L.gasseri HMV18 might not colonize in mice's gut,but can significantly affect the structure of gut microbiota.A bibliographical survey suggested that there were as few as 8 opportunistic infection cases from 1984 to 2022 and that the possibility for L.gasseri to cause infection is relatively low.Therefore,this work provides a basis for the foods or drugs application of L.gasseri HMV18 and gives a map of experiments for the safety assessment of probiotics.展开更多
In recent years probiotics have been considered as a potential substitution of antibiotics to control pathogens and treat infectious diseases in aquaculture.In the present study a strain of Lactobacillus pentosus,name...In recent years probiotics have been considered as a potential substitution of antibiotics to control pathogens and treat infectious diseases in aquaculture.In the present study a strain of Lactobacillus pentosus,named as L.pentosus SF-1,was isolated from waters in aquaculture.The species identification of this strain was conducted by 16S rRNA sequence,and the physiological and biochemical characteristics of this strain were assessed.Furthermore,the virulence,antibiotic sensitivity,cell surface characteristics and acid/base-resistance of L.pentosus SF-1 were determined to evaluate the probiotic potentials of this strain.Specifically,L.pentosus SF-1 is sensitive to most common antibiotics,and no hemolysin was generated from it,indicating the safety of this strain to hosts.In addition,L.pentosus SF-1 was able to tolerate the artificial gastric juice at pH 3 for 4 h and the artificial intestinal fluid at pH 6.8 or 8.0 for 6 h.Moreover,the analysis of self-aggregation and the adhesion of L.pentosus SF-1 to organic solvents suggested a high potential of L.pentosus SF-1 to inhabit the hosts,which was confirmed by testing the colonization of L.pentosus SF-1 in germ-free zebrafish.Interestingly,L.pentosus SF-1 displayed a high bactericidal activity against several bacterial pathogens.Consistently,the incubation of L.pentosus SF-1 significantly promoted the expression of antimicrobial components in zebrafish,contributing to the protection of the fish from E.tarda infection in vivo.Taken together,the probiotic strain L.pentosus SF-1 could be applied as anti-infection reagent in aquaculture.展开更多
Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products...Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products remain unclear.This study aimed to help fill this knowledge gap and examined the degradation mechanism of organophosphorus pesticide,chlorpyrifos,in milk by Lactobacillus delbrueckii ssp.bulgaricus using gas chromatography-tandem mass spectrometry(GC-MS/MS)combined with transcriptome analysis.After the strain was cultured for 20 h in the presence of chlorpyrifos,differential expressions of 383 genes were detected,including genes probably implicated during chlorpyrifos degradation such as those related to hydrolase,phosphoesterase,diphosphatase,oxidoreductase,dehydratase,as well as membrane transporters.GC-MS/MS analysis revealed the changes of secondary metabolites in L.bulgaricus during milk fermentation due to chlorpyrifos stress.6-Methylhexahydro-2H-azepin-2-one,2,6-dihydroxypyridine and methyl 2-aminooxy-4-methylpentanoate as intermediates,along with the proposed pathways,might be involved in chlorpyrifos biodegradation by L.bulgaricus.展开更多
Fermented bamboo shoots(FBS)is a region-specific food widely consumed in Southwestern China,with Lactobacillus as the predominant fermenting bacteria.However,the probiotic potential of Lactobacillus derived from FBS r...Fermented bamboo shoots(FBS)is a region-specific food widely consumed in Southwestern China,with Lactobacillus as the predominant fermenting bacteria.However,the probiotic potential of Lactobacillus derived from FBS reminds largely unexplored,especially for diseases with a low prevalence in areas consuming FBS,namely,inflammatory bowel disease.In this study,Lactiplantibacillus pentosus YQ001 and Lentilactobacillus senioris YQ005 were screening by in vitro probiotic tests to further investigate the probioticlike bioactivity in dextran sulfate sodium(DSS)-induced ulcerative colitis(UC)mouse.They exhibited more positive probiotic effects than Lactobacillus rhamnosus GG in preventing intestinal inflammatory response.The results revealed that both strains improved the abundance of deficient intestinal microbiota in UC mice,including Muribaculaceae and Akkermansia.In the serum metabolome,they modulated the DSS-disturbed levels of metabolites,with significant increment of cinnamic acid.Meanwhile,they reduced the expression levels of interleukin-1β(IL-1β),interleukin-6(IL-6)inflammatory factors and increased zonula occludens-1(ZO-1),Occludin,and cathelicidin-related antimicrobial peptide(CRAMP)in the colon.Consequently,these results demonstrated that Lactobacillus spp.isolates derived from FBS showed promising probiotic activity based on the gut microbiome homeostasis modulation,anti-inflammation and intestinal barrier protection in UC mice.展开更多
Our previous study found that feeding with Lactobacillus plantarum Ep-M17 could effectively affect the growth performance,immune response,and gut microbiota of Penaeus vannamei.However,high temperature and pressure du...Our previous study found that feeding with Lactobacillus plantarum Ep-M17 could effectively affect the growth performance,immune response,and gut microbiota of Penaeus vannamei.However,high temperature and pressure during feed pelletizing is the main problem that can lead to a decrease in the activity of probiotics or cause their inactivation.Further investigation needs to investigate whether inactivated Ep-M17 can exert similar effects as live Ep-M17.Therefore,we evaluated the effects of inactivated L.plantarum Ep-M17 on growth performance,immune response,disease resistance,and gut microbiota in P.vannamei.Results show that adding inactivated Ep-M17 to the feed also promoted body weight gain and increased relative immune protection in shrimp.Also,histological examination revealed that the administration of inactivated Ep-M17 led to improvements in the density and distribution of microvilli in the intestines and enhancements in the abundance of B and R cells in the hepatopancreas.Additionally,the inactivated Ep-M17 supplementation resulted in increased activity levels of nutrient immune-related enzymes in both the shrimp hepatopancreas and intestines.Moreover,it stimulated the expression of Lvlec,PEN-3a,Crustin,LGBP,Lysozyme,and proPo genes in both the hepatopancreas and intestines.Furthermore,the inactivated Ep-M17 also increased bacterial diversity in the gut of shrimp and promoted the abundance of specific flora,facilitating the host organism’s metabolism and immunity to improve the disease resistance of shrimp.Therefore,supplementation of inactivated L.plantarum Ep-M17 in shrimp diets can exert similar effects as live L.plantarum Ep-M17 effectively improving growth performance,gut microbiota,immune response,and disease resistance in P.vannamei.展开更多
Probiotics have great potential in regulating intestinal pain.In this study,the effects of Lactobacillus plantarum AR495 on the visceral sensitivity and gut microbiota of irritable bowel syndrome(IBS)rats were studied...Probiotics have great potential in regulating intestinal pain.In this study,the effects of Lactobacillus plantarum AR495 on the visceral sensitivity and gut microbiota of irritable bowel syndrome(IBS)rats were studied.The results showed that tryptase released after mast cell activation and degranulation plays a key role in visceral pain,and L.plantarum AR495 reduced the stimulation of colonic mast cells and the expression of protease-activated receptor 2(PAR2)and TRPV1 in dorsal root ganglia.Research further showed that supplementation with L.plantarum AR495 increased the level of short-chain fatty acids(SCFAs)and enhanced the barrier function of the colon.In addition,the microbiota analysis of the colon indicated that L.plantarum AR495 promoted the proliferation of Bifidobacterium and inhibited the proliferation of Lachnospiraceae,which alleviated the imbalance of the intestinal microbiota caused by IBS to a certain extent.In total,L.plantarum AR495 might reduce visceral sensitivity through the Mast cell-PAR2-TRPV1 signaling pathway by maintaining the homeostasis of the intestinal barrier.展开更多
BACKGROUND Hepatitis B cirrhosis(HBC)is a chronic disease characterized by irreversible diffuse liver damage and aggravated by intestinal microbial imbalance and metabolic dysfunction.Although the relationship between...BACKGROUND Hepatitis B cirrhosis(HBC)is a chronic disease characterized by irreversible diffuse liver damage and aggravated by intestinal microbial imbalance and metabolic dysfunction.Although the relationship between certain single probiotics and HBC has been explored,the impact of the complex ready-to-eat Lactobacillus paracasei N1115(LP N1115)supplement on patients with HBC has not been determined.AIM To compare the changes in the microbiota,inflammatory factor levels,and liver function before and after probiotic treatment in HBC patients.METHODS This study included 160 HBC patients diagnosed at the General Hospital of Ningxia Medical University between October 2018 and December 2020.Patients were randomly divided into an intervention group that received LP N1115 supplementation and routine treatment and a control group that received routine treatment only.Fecal samples were collected at the onset and conclusion of the 12-wk intervention period.The structure of the intestinal microbiota and the levels of serological indicators,such as liver function and inflammatory factors,were assessed.RESULTS Following LP N1115 intervention,the intestinal microbial diversity significantly increased in the intervention group(P<0.05),and the structure of the intestinal microbiota was characterized by an increase in the proportions of probiotic microbes and a reduction in harmful bacteria.Additionally,the intervention group demonstrated notable improvements in liver function indices and significantly lower levels of inflammatory factors(P<0.05).CONCLUSION LP N1115 is a promising treatment for ameliorating intestinal microbial imbalance in HBC patients by modulating the structure of the intestinal microbiota,improving liver function,and reducing inflammatory factor levels.展开更多
基金supported by the National Natural Science Foundation of China(32021005,31820103010)the Fundamental Research Funds for the Central Universities(JUSRP22006,JUSRP51501)the Program of Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province,Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_2391).
文摘Lactobacillus rhamnosus(Rh)and Lactobacillus reuteri(Re)are well-known probiotic species in inflammatory bowel disease(IBD)research.The variations between these species’efficacy against colitis,and their model of action in this regard,are intriguing and enable treatment to be individually tailored to patients.In this study,four strains each of Rh and Re were isolated from fecal samples and their draft genomes were sequenced.The anti-colitis activities of both strains involved various aspects of intestinal immune,physical,chemical,and biological barrier function.Strikingly,the tested strains exhibited considerable interspecies and intraspecies specificity in colitis amelioration.Rh strains significantly outperformed Re strains in terms of short-chain fatty acid synthesis.Nevertheless,Re strains were more effective than Rh strains in inhibiting production of inflammatory factors;promoting production of intestinal mucus,antimicrobial peptides,and tight junction proteins;and supporting the stem cell compartment.This accounts for the anti-colitis outcomes of Re strains being superior to those of Rh strains.In addition,the effective Rh and Re strains were found to express high concentrations of specific carbohydrate metabolism-and prophage-related genes,respectively.Taken together,the results of this study could assist researchers in developing effective therapies for IBD.
文摘The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological techniques (30 Bacillus and 30 Lactobacillus) and the ability to produce biosurfactants was demonstrated by a hydrocarbon emulsification index (E24). The emulsification indexes (E24) varied from 9% to 100% for Bacillus and from 33% to 100% for Lactobacillus as well. The antagonistic assay showed that biosurfactants were able to inhibit the formation of biofilms and growth of pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella typhirium, Shigella boydii and Proteus mirabilis. The biosurfactant consortium (BioC) from Bacillus consortium and from Lactobacillus was able to inhibit biofilm formation and the pathogens growth. The BioC was stable to alkaline pH and the temperatures stability of Biosurfactant was ranging from 50°C to 90°C. The soap was made by the cold saponification process using one biosurfactant consortium formulated. This soap has a pH of 10 and showed good cleaning power and good foam stability. Similarly, the soap showed good antiseptic power and disinfection power against all pathogens tested. Handwashing is critical to preventing disease transmission. The persistence of pathogens in waste water was evaluated. The BioS produced showed good disinfection power against all pathogens tested. The valor of reduction on the hands and in the waste water was significantly more than compared to the control soaps used. This soap could be used in the prevention, fighting, and treatment of bacterial and viral infections.
文摘This experiment was conducted to determine the performance of heat-stressed layers fed a diet containing the probiotic Lactobacillus plantarum RS5 or its products of fermentation (postbiotics). Twenty-week-old Isa White layers, were subdivided into six treatments of 32 individually caged birds. Half of the birds were reared under regular temperature conditions, while the other half was subjected to cyclic daily heat stress. Layers were offered one of three diets: 1) Control;2) Control + Lactobacillus plantarum RS5 probiotic;3) Control + Lactobacillus plantarum RS5 postbiotics. Birds were tested for performance and visceral organ development for 5 months. Heat stress negatively affected the birds’ feed intake, egg weight, shell weight percentage, Haugh unit, shell thickness, yolk color, body weight and spleen weight percentage. Postbiotics significantly increased egg production (p < 0.05) in comparison to the control and the probiotic fed group (94.8% vs 92.6% vs 93.1%, respectively). Birds under probiotic or postbiotic diet showed a significantly higher (p < 0.05) feed intake and egg weight, although the probiotic had a more pronounced and gradual effect. Specific gravity, yolk weight percentage and shell thickness didn’t show differences among dietary groups. The Haugh Unit was significantly higher (p < 0.05) in probiotic group which also showed a significantly lower yolk color index (p < 0.05). The different feed treatments did not impact the bird’s viscera weight percentage, except for the ileum that was significantly lower (p < 0.05) under postbiotic supplementation. Both probiotics and postbiotics could be used as a potential growth promoters and might alleviate heat stress impact in poultry industry.
基金financially supported by postdoctoral funding of Hebei Medical UniversityHebei Province Postdoctoral Research Project Funding(B2022003035)+5 种基金Natural Science Foundation of Hebei Province(H2020206579)CAMS Innovation Found for Medical Sciences(2019-I2M-5-055)2023 Scientific Research Projects of Colleges and Universities in Hebei Province(QN2023131)S&T Program of Hebei(18277743D)Undergraduate Innovation Experiment Project from Hebei Medical University(USIP2019008)Spring rain project of Hebei Medical University(CYCZ201906)。
文摘Human normal flora is a source of probiotics.The safety characteristics of a specific isolate determine its application in foods or drugs.The food-borne-pathogen antagonist strain Lactobacillus gasseri HMV18 is one of the isolates from normal human flora.In this work,we assessed the in vitro pH tolerance,bile tolerance,biogenic amine production,mucin utilization,and safety of in vivo administration to mice to evaluate general health,organ-body weight index,organ histopathological change,whether L.gasseri HMV18 can colonize in the gut or modulate the gut microbiota after oral administration.The results suggest that L.gasseri HMV18 can tolerate pH 3 for 2 h,3%bile for 3 h,biogenic amine negative,mucin usage negative,does not encode verified toxins,and cause no visible change in mice's organs.L.gasseri HMV18 might not colonize in mice's gut,but can significantly affect the structure of gut microbiota.A bibliographical survey suggested that there were as few as 8 opportunistic infection cases from 1984 to 2022 and that the possibility for L.gasseri to cause infection is relatively low.Therefore,this work provides a basis for the foods or drugs application of L.gasseri HMV18 and gives a map of experiments for the safety assessment of probiotics.
基金supported by the National Natural Science Foundation of China(No.31972802)the Natural Science Foundation of Shandong Province(No.ZR2019MC041)the Taishan Scholar Program of Shandong Province(No.tsqn201812023).
文摘In recent years probiotics have been considered as a potential substitution of antibiotics to control pathogens and treat infectious diseases in aquaculture.In the present study a strain of Lactobacillus pentosus,named as L.pentosus SF-1,was isolated from waters in aquaculture.The species identification of this strain was conducted by 16S rRNA sequence,and the physiological and biochemical characteristics of this strain were assessed.Furthermore,the virulence,antibiotic sensitivity,cell surface characteristics and acid/base-resistance of L.pentosus SF-1 were determined to evaluate the probiotic potentials of this strain.Specifically,L.pentosus SF-1 is sensitive to most common antibiotics,and no hemolysin was generated from it,indicating the safety of this strain to hosts.In addition,L.pentosus SF-1 was able to tolerate the artificial gastric juice at pH 3 for 4 h and the artificial intestinal fluid at pH 6.8 or 8.0 for 6 h.Moreover,the analysis of self-aggregation and the adhesion of L.pentosus SF-1 to organic solvents suggested a high potential of L.pentosus SF-1 to inhabit the hosts,which was confirmed by testing the colonization of L.pentosus SF-1 in germ-free zebrafish.Interestingly,L.pentosus SF-1 displayed a high bactericidal activity against several bacterial pathogens.Consistently,the incubation of L.pentosus SF-1 significantly promoted the expression of antimicrobial components in zebrafish,contributing to the protection of the fish from E.tarda infection in vivo.Taken together,the probiotic strain L.pentosus SF-1 could be applied as anti-infection reagent in aquaculture.
基金supported by Natural Science Foundation of China(41907357)Natural Science Foundation of Shandong(ZR2019PC048)the Key R&D project of Shandong Province(2021TZXD007).
文摘Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products remain unclear.This study aimed to help fill this knowledge gap and examined the degradation mechanism of organophosphorus pesticide,chlorpyrifos,in milk by Lactobacillus delbrueckii ssp.bulgaricus using gas chromatography-tandem mass spectrometry(GC-MS/MS)combined with transcriptome analysis.After the strain was cultured for 20 h in the presence of chlorpyrifos,differential expressions of 383 genes were detected,including genes probably implicated during chlorpyrifos degradation such as those related to hydrolase,phosphoesterase,diphosphatase,oxidoreductase,dehydratase,as well as membrane transporters.GC-MS/MS analysis revealed the changes of secondary metabolites in L.bulgaricus during milk fermentation due to chlorpyrifos stress.6-Methylhexahydro-2H-azepin-2-one,2,6-dihydroxypyridine and methyl 2-aminooxy-4-methylpentanoate as intermediates,along with the proposed pathways,might be involved in chlorpyrifos biodegradation by L.bulgaricus.
基金supported by the key project of the Natural Science Foundation of Chongqing(cstc2020jcyj-zdxmX0029)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100412).
文摘Fermented bamboo shoots(FBS)is a region-specific food widely consumed in Southwestern China,with Lactobacillus as the predominant fermenting bacteria.However,the probiotic potential of Lactobacillus derived from FBS reminds largely unexplored,especially for diseases with a low prevalence in areas consuming FBS,namely,inflammatory bowel disease.In this study,Lactiplantibacillus pentosus YQ001 and Lentilactobacillus senioris YQ005 were screening by in vitro probiotic tests to further investigate the probioticlike bioactivity in dextran sulfate sodium(DSS)-induced ulcerative colitis(UC)mouse.They exhibited more positive probiotic effects than Lactobacillus rhamnosus GG in preventing intestinal inflammatory response.The results revealed that both strains improved the abundance of deficient intestinal microbiota in UC mice,including Muribaculaceae and Akkermansia.In the serum metabolome,they modulated the DSS-disturbed levels of metabolites,with significant increment of cinnamic acid.Meanwhile,they reduced the expression levels of interleukin-1β(IL-1β),interleukin-6(IL-6)inflammatory factors and increased zonula occludens-1(ZO-1),Occludin,and cathelicidin-related antimicrobial peptide(CRAMP)in the colon.Consequently,these results demonstrated that Lactobacillus spp.isolates derived from FBS showed promising probiotic activity based on the gut microbiome homeostasis modulation,anti-inflammation and intestinal barrier protection in UC mice.
基金Supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY23D060002)the Key Scientific and Technological Grant of Zhejiang for Breeding New Agricultural Varieties(No.2021C02069-5)+1 种基金the Pingyang County Science and Technology Strengthening Agriculture Industry Upgrading Project(No.2023PY003)the National Natural Science Foundation of China(No.41906107)。
文摘Our previous study found that feeding with Lactobacillus plantarum Ep-M17 could effectively affect the growth performance,immune response,and gut microbiota of Penaeus vannamei.However,high temperature and pressure during feed pelletizing is the main problem that can lead to a decrease in the activity of probiotics or cause their inactivation.Further investigation needs to investigate whether inactivated Ep-M17 can exert similar effects as live Ep-M17.Therefore,we evaluated the effects of inactivated L.plantarum Ep-M17 on growth performance,immune response,disease resistance,and gut microbiota in P.vannamei.Results show that adding inactivated Ep-M17 to the feed also promoted body weight gain and increased relative immune protection in shrimp.Also,histological examination revealed that the administration of inactivated Ep-M17 led to improvements in the density and distribution of microvilli in the intestines and enhancements in the abundance of B and R cells in the hepatopancreas.Additionally,the inactivated Ep-M17 supplementation resulted in increased activity levels of nutrient immune-related enzymes in both the shrimp hepatopancreas and intestines.Moreover,it stimulated the expression of Lvlec,PEN-3a,Crustin,LGBP,Lysozyme,and proPo genes in both the hepatopancreas and intestines.Furthermore,the inactivated Ep-M17 also increased bacterial diversity in the gut of shrimp and promoted the abundance of specific flora,facilitating the host organism’s metabolism and immunity to improve the disease resistance of shrimp.Therefore,supplementation of inactivated L.plantarum Ep-M17 in shrimp diets can exert similar effects as live L.plantarum Ep-M17 effectively improving growth performance,gut microbiota,immune response,and disease resistance in P.vannamei.
基金supported by the shanghai agriculture applied technology development program(2019-02-08-00-07-F01152)the national science fund for distinguished young scholars(32025029)+1 种基金the shanghai engineering research center of food microbiology program(19DZ2281100)the national key R&D program of china(2018YFC1604305)。
文摘Probiotics have great potential in regulating intestinal pain.In this study,the effects of Lactobacillus plantarum AR495 on the visceral sensitivity and gut microbiota of irritable bowel syndrome(IBS)rats were studied.The results showed that tryptase released after mast cell activation and degranulation plays a key role in visceral pain,and L.plantarum AR495 reduced the stimulation of colonic mast cells and the expression of protease-activated receptor 2(PAR2)and TRPV1 in dorsal root ganglia.Research further showed that supplementation with L.plantarum AR495 increased the level of short-chain fatty acids(SCFAs)and enhanced the barrier function of the colon.In addition,the microbiota analysis of the colon indicated that L.plantarum AR495 promoted the proliferation of Bifidobacterium and inhibited the proliferation of Lachnospiraceae,which alleviated the imbalance of the intestinal microbiota caused by IBS to a certain extent.In total,L.plantarum AR495 might reduce visceral sensitivity through the Mast cell-PAR2-TRPV1 signaling pathway by maintaining the homeostasis of the intestinal barrier.
基金Supported by The Health System Research Project of Ningxia Hui Autonomous Region of China,No.2022-NWKY-061.
文摘BACKGROUND Hepatitis B cirrhosis(HBC)is a chronic disease characterized by irreversible diffuse liver damage and aggravated by intestinal microbial imbalance and metabolic dysfunction.Although the relationship between certain single probiotics and HBC has been explored,the impact of the complex ready-to-eat Lactobacillus paracasei N1115(LP N1115)supplement on patients with HBC has not been determined.AIM To compare the changes in the microbiota,inflammatory factor levels,and liver function before and after probiotic treatment in HBC patients.METHODS This study included 160 HBC patients diagnosed at the General Hospital of Ningxia Medical University between October 2018 and December 2020.Patients were randomly divided into an intervention group that received LP N1115 supplementation and routine treatment and a control group that received routine treatment only.Fecal samples were collected at the onset and conclusion of the 12-wk intervention period.The structure of the intestinal microbiota and the levels of serological indicators,such as liver function and inflammatory factors,were assessed.RESULTS Following LP N1115 intervention,the intestinal microbial diversity significantly increased in the intervention group(P<0.05),and the structure of the intestinal microbiota was characterized by an increase in the proportions of probiotic microbes and a reduction in harmful bacteria.Additionally,the intervention group demonstrated notable improvements in liver function indices and significantly lower levels of inflammatory factors(P<0.05).CONCLUSION LP N1115 is a promising treatment for ameliorating intestinal microbial imbalance in HBC patients by modulating the structure of the intestinal microbiota,improving liver function,and reducing inflammatory factor levels.