This paper proposes a system for stable ladder climbing of the human-sized four-limbed robot“WAREC-1”,including the following 3 components:(a)Whole-body motion planning;(b)Rung recognition system and(c)Reaction forc...This paper proposes a system for stable ladder climbing of the human-sized four-limbed robot“WAREC-1”,including the following 3 components:(a)Whole-body motion planning;(b)Rung recognition system and(c)Reaction force adjustment.These 3 components guarantee appropriate ladder climbing motion,successful rung grub and proper reaction force distribution at contact points throughout the climbing motion,respectively.With this system,(1)Stable ladder climbing in 2-point contact gait by a human-sized robot and(2)Successful and stable climbing of an irregular ladder(with a higher or inclined rung)in both 3-point and 2-point contact gait with the capability of recognizing the target rung and the corresponding motion planning are realized,which have rarely been realized by former studies.Finally,experiment results and data of the robot ladder climbing are also presented to evaluate the proposed system.展开更多
Ladder climbing is a relatively new but practical locomotion style for robots. Unfortunately, due to their size and weight, ladder climbing by human-sized robots developed so far is struggling with the speedup of ladd...Ladder climbing is a relatively new but practical locomotion style for robots. Unfortunately, due to their size and weight, ladder climbing by human-sized robots developed so far is struggling with the speedup of ladder climbing motion itself. Therefore, in this paper, a new ladder climbing gait for the robot WAREC-1R is proposed by the authors, which is both faster than the former ones and stable. However, to realize such a gait, a point that has to be taken into consideration is the deformation caused by the self-weight of the robot. To deal with this issue, extra hardware (sensor) and software (position and force control) systems and extra time for sensing and calculation were required. For a complete solution without any complicated systems and time only for deformation compensation, limb stiffness improvement plan by the minimal design change of mechanical parts of the robot is also proposed by the authors, with a thorough study about deformation distribution in the robot. With redesigned parts, ladder climbing experiments by WAREC-1R proved that both the new ladder climbing gait and the limb stiffness improvement are successful, and the reduced deformation is very close to the estimated value as well.展开更多
基金This research was funded by ImPACT TRC Program of Council for Science,Technology and Innovation(Cabinet Office,Government of Japan)This study was conducted with the support of Research Institute for Science and Engineering,Waseda University+3 种基金Future Robotics Organization,Waseda University,and as a part of the humanoid project at the Humanoid Robotics Institute,Waseda UniversityThis research was also partially supported by SolidWorks Japan K.KDYDEN Corporationand KITO Corporation whom we thank for their financial and technical support.
文摘This paper proposes a system for stable ladder climbing of the human-sized four-limbed robot“WAREC-1”,including the following 3 components:(a)Whole-body motion planning;(b)Rung recognition system and(c)Reaction force adjustment.These 3 components guarantee appropriate ladder climbing motion,successful rung grub and proper reaction force distribution at contact points throughout the climbing motion,respectively.With this system,(1)Stable ladder climbing in 2-point contact gait by a human-sized robot and(2)Successful and stable climbing of an irregular ladder(with a higher or inclined rung)in both 3-point and 2-point contact gait with the capability of recognizing the target rung and the corresponding motion planning are realized,which have rarely been realized by former studies.Finally,experiment results and data of the robot ladder climbing are also presented to evaluate the proposed system.
文摘Ladder climbing is a relatively new but practical locomotion style for robots. Unfortunately, due to their size and weight, ladder climbing by human-sized robots developed so far is struggling with the speedup of ladder climbing motion itself. Therefore, in this paper, a new ladder climbing gait for the robot WAREC-1R is proposed by the authors, which is both faster than the former ones and stable. However, to realize such a gait, a point that has to be taken into consideration is the deformation caused by the self-weight of the robot. To deal with this issue, extra hardware (sensor) and software (position and force control) systems and extra time for sensing and calculation were required. For a complete solution without any complicated systems and time only for deformation compensation, limb stiffness improvement plan by the minimal design change of mechanical parts of the robot is also proposed by the authors, with a thorough study about deformation distribution in the robot. With redesigned parts, ladder climbing experiments by WAREC-1R proved that both the new ladder climbing gait and the limb stiffness improvement are successful, and the reduced deformation is very close to the estimated value as well.