This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of...This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).展开更多
This paper deals with the description and the representation of polynomials defined over n-simplices, The polynomials are computed by using two recurrent schemes: the Neville-Aitken one for the Lagrange interpolating ...This paper deals with the description and the representation of polynomials defined over n-simplices, The polynomials are computed by using two recurrent schemes: the Neville-Aitken one for the Lagrange interpolating operator and the De Casteljau one for the Bernstein-Bezier approximating operator. Both schemes fall intothe framework of transformations of the form where the F iare given numbers (forexample, at the initial step they coincide with the values of the function on a given lattice), and the coefficients (x) are linear polynomials valued in x and x is fixed. A general theory for such sequence of transformations can be found in [2] where it is also proved that these tranformations are completely characterized in term of a linear functional, reference functional. This functional is associated with a linear space., characteristic space.The concepts of reference functionals and characteristic spaces will be used and we shall prove the existence of a characteristic space for the reference functional: associated with these operators.展开更多
In this paper, if the condition of variation δt = 0 is satisfied, the higher-order Lagrangian equations and higher-order Hamilton's equations, which show the consistency with the results of traditional analytical me...In this paper, if the condition of variation δt = 0 is satisfied, the higher-order Lagrangian equations and higher-order Hamilton's equations, which show the consistency with the results of traditional analytical mechanics, are obtained from the higher-order Lagrangian equations and higher-order Hamilton's equations. The results can enrich the theory of analytical mechanics.展开更多
The dual algorithm for minimax problems is further studied in this paper.The resulting theoretical analysis shows that the condition number of the corresponding Hessian of the smooth modified Lagrange function with ch...The dual algorithm for minimax problems is further studied in this paper.The resulting theoretical analysis shows that the condition number of the corresponding Hessian of the smooth modified Lagrange function with changing parameter in the dual algorithm is proportional to the reciprocal of the parameter,which is very important for the efficiency of the dual algorithm.At last,the numerical experiments are reported to validate the analysis results.展开更多
In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent opera...In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent operator equations for the convex programming problems under the certain conditions are obtained. Then a second-order differential equation system with the feedback controls is constructed on the basis of operator equation. We prove that any accumulation point of the trajectory of the second-order differential equation system with the feedback controls is a solution to the convex programming problem. In the end, two examples using this differential equation system are solved. The numerical results are reported to verify the effectiveness of the second-order differential equation system with the feedback controls for solving the convex programming problem.展开更多
In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and fo...In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective,reliable and does not require any restrictive assumptions for nonlinear terms.展开更多
In this paper, we investigate the quadratic approximation methods. After studying the basic idea of simplex methods, we construct several new search directions by combining the local information progressively obtained...In this paper, we investigate the quadratic approximation methods. After studying the basic idea of simplex methods, we construct several new search directions by combining the local information progressively obtained during the iterates of the algorithm to form new subspaces. And the quadratic model is solved in the new subspaces. The motivation is to use the information disclosed by the former steps to construct more promising directions. For most tested problems, the number of functions evaluations have been reduced obviously through our algorithms.展开更多
We propose a new trust region algorithm for nonlinear constrained optimization problems. In each iteration of our algorithm, the trial step is computed by minimizing a quadratic approximation to the augmented Lagrange...We propose a new trust region algorithm for nonlinear constrained optimization problems. In each iteration of our algorithm, the trial step is computed by minimizing a quadratic approximation to the augmented Lagrange function in the trust region. The augmented Lagrange function is also used as a merit function to decide whether the trial step should be accepted. Our method extends the traditional trust region approach by combining a filter technique into the rules for accepting trial steps so that a trial step could still be accepted even when it is rejected by the traditional rule based on merit function reduction. An estimate of the Lagrange multiplier is updated at each iteration, and the penalty parameter is updated to force sufficient reduction in the norm of the constraint violations. Active set technique is used to handle the inequality constraints. Numerical results for a set of constrained problems from the CUTEr collection are also reported.展开更多
This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors ...This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors establish the relationship between an optimal solution of SIMFP and saddle point of scalar Lagrange function for SIMFP. Further, the authors study saddle point criteria of a vector Lagrange function defined for SIMFP.展开更多
The augmented Lagrangian method is a classical method for solving constrained optimization.Recently,the augmented Lagrangian method attracts much attention due to its applications to sparse optimization in compressive...The augmented Lagrangian method is a classical method for solving constrained optimization.Recently,the augmented Lagrangian method attracts much attention due to its applications to sparse optimization in compressive sensing and low rank matrix optimization problems.However,most Lagrangian methods use first order information to update the Lagrange multipliers,which lead to only linear convergence.In this paper,we study an update technique based on second order information and prove that superlinear convergence can be obtained.Theoretical properties of the update formula are given and some implementation issues regarding the new update are also discussed.展开更多
The decision-making of cash holdings is very important for the daily operation of enterprises.This present paper tries to establish uncertain optimal cash holding models with the constraint of safe cash holding area,a...The decision-making of cash holdings is very important for the daily operation of enterprises.This present paper tries to establish uncertain optimal cash holding models with the constraint of safe cash holding area,and discusses the solutions of the models by establishing Lagrange function under KKT condition.On the one hand,this paper enriches the existing cash holding models,on the other hand,it is also a comprehensive discussion on the application of uncertainty theory in cash holding management.展开更多
A continuation algorithm for the solution of max-cut problems is proposed in this paper. Unlike the available semi-definite relaxation, a max-cut problem is converted into a continuous nonlinear programming by employi...A continuation algorithm for the solution of max-cut problems is proposed in this paper. Unlike the available semi-definite relaxation, a max-cut problem is converted into a continuous nonlinear programming by employing NCP functions, and the resulting nonlinear programming problem is then solved by using the augmented Lagrange penalty function method. The convergence property of the proposed algorithm is studied. Numerical experiments and comparisons with the Geomeans and Williamson randomized algorithm made on some max-cut test problems show that the algorithm generates satisfactory solutions for all the test problems with much less computation costs.展开更多
基金The second named author was supported in part by an NSERC Postdoctoral Fellowship,Canada and a CR F Grant,University of Alberta
文摘This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).
文摘This paper deals with the description and the representation of polynomials defined over n-simplices, The polynomials are computed by using two recurrent schemes: the Neville-Aitken one for the Lagrange interpolating operator and the De Casteljau one for the Bernstein-Bezier approximating operator. Both schemes fall intothe framework of transformations of the form where the F iare given numbers (forexample, at the initial step they coincide with the values of the function on a given lattice), and the coefficients (x) are linear polynomials valued in x and x is fixed. A general theory for such sequence of transformations can be found in [2] where it is also proved that these tranformations are completely characterized in term of a linear functional, reference functional. This functional is associated with a linear space., characteristic space.The concepts of reference functionals and characteristic spaces will be used and we shall prove the existence of a characteristic space for the reference functional: associated with these operators.
基金Foundation of Education Department of Jiangxi Province under Grant No.[2007]136the Natural Science Foundation of Jiangxi Province
文摘In this paper, if the condition of variation δt = 0 is satisfied, the higher-order Lagrangian equations and higher-order Hamilton's equations, which show the consistency with the results of traditional analytical mechanics, are obtained from the higher-order Lagrangian equations and higher-order Hamilton's equations. The results can enrich the theory of analytical mechanics.
文摘The dual algorithm for minimax problems is further studied in this paper.The resulting theoretical analysis shows that the condition number of the corresponding Hessian of the smooth modified Lagrange function with changing parameter in the dual algorithm is proportional to the reciprocal of the parameter,which is very important for the efficiency of the dual algorithm.At last,the numerical experiments are reported to validate the analysis results.
文摘In this paper, we establish the second-order differential equation system with the feedback controls for solving the problem of convex programming. Using Lagrange function and projection operator, the equivalent operator equations for the convex programming problems under the certain conditions are obtained. Then a second-order differential equation system with the feedback controls is constructed on the basis of operator equation. We prove that any accumulation point of the trajectory of the second-order differential equation system with the feedback controls is a solution to the convex programming problem. In the end, two examples using this differential equation system are solved. The numerical results are reported to verify the effectiveness of the second-order differential equation system with the feedback controls for solving the convex programming problem.
文摘In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective,reliable and does not require any restrictive assumptions for nonlinear terms.
基金This work was partially supported by the Doctoral Foundation of Hebei University(Grant No.Y2006084)the National Natural Science Foundation of China(Grant No.10231060)
文摘In this paper, we investigate the quadratic approximation methods. After studying the basic idea of simplex methods, we construct several new search directions by combining the local information progressively obtained during the iterates of the algorithm to form new subspaces. And the quadratic model is solved in the new subspaces. The motivation is to use the information disclosed by the former steps to construct more promising directions. For most tested problems, the number of functions evaluations have been reduced obviously through our algorithms.
基金supported by NSFC Grant 10831006CAS grant kjcx-yw-s7
文摘We propose a new trust region algorithm for nonlinear constrained optimization problems. In each iteration of our algorithm, the trial step is computed by minimizing a quadratic approximation to the augmented Lagrange function in the trust region. The augmented Lagrange function is also used as a merit function to decide whether the trial step should be accepted. Our method extends the traditional trust region approach by combining a filter technique into the rules for accepting trial steps so that a trial step could still be accepted even when it is rejected by the traditional rule based on merit function reduction. An estimate of the Lagrange multiplier is updated at each iteration, and the penalty parameter is updated to force sufficient reduction in the norm of the constraint violations. Active set technique is used to handle the inequality constraints. Numerical results for a set of constrained problems from the CUTEr collection are also reported.
基金supported by the Council of Scientific and Industrial Research(CSIR),New Delhi,India under Grant No.09/013(0474)/2012-EMR-1
文摘This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors establish the relationship between an optimal solution of SIMFP and saddle point of scalar Lagrange function for SIMFP. Further, the authors study saddle point criteria of a vector Lagrange function defined for SIMFP.
基金Supported by National Natural Science Foundation of China(Grant Nos.10831006,11021101)by CAS(Grant No.kjcx-yw-s7)
文摘The augmented Lagrangian method is a classical method for solving constrained optimization.Recently,the augmented Lagrangian method attracts much attention due to its applications to sparse optimization in compressive sensing and low rank matrix optimization problems.However,most Lagrangian methods use first order information to update the Lagrange multipliers,which lead to only linear convergence.In this paper,we study an update technique based on second order information and prove that superlinear convergence can be obtained.Theoretical properties of the update formula are given and some implementation issues regarding the new update are also discussed.
基金This research was partially supported by the National Natural Science Foundation of China[grant numbers 11871275,71472088].
文摘The decision-making of cash holdings is very important for the daily operation of enterprises.This present paper tries to establish uncertain optimal cash holding models with the constraint of safe cash holding area,and discusses the solutions of the models by establishing Lagrange function under KKT condition.On the one hand,this paper enriches the existing cash holding models,on the other hand,it is also a comprehensive discussion on the application of uncertainty theory in cash holding management.
基金Key Project supported by National Natural Science Foundation of China,10231060
文摘A continuation algorithm for the solution of max-cut problems is proposed in this paper. Unlike the available semi-definite relaxation, a max-cut problem is converted into a continuous nonlinear programming by employing NCP functions, and the resulting nonlinear programming problem is then solved by using the augmented Lagrange penalty function method. The convergence property of the proposed algorithm is studied. Numerical experiments and comparisons with the Geomeans and Williamson randomized algorithm made on some max-cut test problems show that the algorithm generates satisfactory solutions for all the test problems with much less computation costs.