This paper considers to replace △_m(x)=(1-x^2)~2(1/2)/n +1/n^2 in the following result for simultaneous Lagrange interpolating approximation with (1-x^2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then |f^(k)(x)-P_^...This paper considers to replace △_m(x)=(1-x^2)~2(1/2)/n +1/n^2 in the following result for simultaneous Lagrange interpolating approximation with (1-x^2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then |f^(k)(x)-P_^(k)(f,x)|=O(1)△_(n)^(a-k)(x)ω(f^(a),△(x))(‖L_n-‖+‖L_n‖),0≤k≤q, where P_n( f ,x)is the Lagrange interpolating polynomial of degree n+ 2r-1 of f on the nodes X_n U Y_n(see the definition of the text), and thus give a problem raised in [XiZh] a complete answer.展开更多
This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of...This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).展开更多
Here we discuss some phenomena of equiconvergence for the functions analytic inside the lemniscate. A quantitative estimate of sequences of differences between the Jacobi polynomials and Lagrange interpolants and some...Here we discuss some phenomena of equiconvergence for the functions analytic inside the lemniscate. A quantitative estimate of sequences of differences between the Jacobi polynomials and Lagrange interpolants and some other results are obtained.展开更多
In this paper,an optimality condition for nonlinear programming problems with box constraints is given by using linear transformation and Lagrange interpolating polynomials.Based on this condition,two new local optim...In this paper,an optimality condition for nonlinear programming problems with box constraints is given by using linear transformation and Lagrange interpolating polynomials.Based on this condition,two new local optimization methods are developed.The solution points obtained by the new local optimization methods can improve the Karush–Kuhn–Tucker(KKT)points in general.Two global optimization methods then are proposed by combining the two new local optimization methods with a filled function method.Some numerical examples are reported to show the effectiveness of the proposed methods.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
S.M.Lozinskii proved the exact convergence rate at the zero of Lagrange interpolation polynomials to |x| based on equidistant nodes in [-1,1]. In 2000, M. Rever generalized S.M.Lozinskii's result to |x|α(0 <≤...S.M.Lozinskii proved the exact convergence rate at the zero of Lagrange interpolation polynomials to |x| based on equidistant nodes in [-1,1]. In 2000, M. Rever generalized S.M.Lozinskii's result to |x|α(0 <≤ α≤ 1). In this paper we will present the exact rate of convergence at the point zero for the interpolants of |x|α1(1 < α < 2)..展开更多
It is a classical result of Bernstein that the sequence of Lagrange interpolation polynomials to \x\ at e-qually spaced nodes in [-1.1] diverges everywhere. except at zero and the end-points. In this paper we show tha...It is a classical result of Bernstein that the sequence of Lagrange interpolation polynomials to \x\ at e-qually spaced nodes in [-1.1] diverges everywhere. except at zero and the end-points. In this paper we show that the sequence of Lagrange interpolation polynomials corresponding to the functions which possess better smoothness on equidistant nodes in [-1.1] still diverges every -where in the interval except at zero and the end-points.展开更多
It is a classical result of Bernstein that the sequence of Lagrange interpolation polumomials to |x| at equally spaced nodes in [-1, 1] diverges everywhere, except at zero and the end-points. In the present paper, t...It is a classical result of Bernstein that the sequence of Lagrange interpolation polumomials to |x| at equally spaced nodes in [-1, 1] diverges everywhere, except at zero and the end-points. In the present paper, toe prove that the sequence of Lagrange interpolation polynomials corresponding to |x|^α (2 〈 α 〈 4) on equidistant nodes in [-1, 1] diverges everywhere, except at zero and the end-points.展开更多
This paper shows that the sequence of Lagrange interpolation polynomials corresponding to the rune tion f(z) =|x|^α(1〈α〈2) on [-1,1] can diverge everywhere in the interval except at zero and the end-points.
In this paper we present a generalized quantitative version of a result the exact convergence rate at zero of Lagrange interpolation polynomial to spaced nodes in [-1,1] due to M.Revers concerning f(x) = |x|α wit...In this paper we present a generalized quantitative version of a result the exact convergence rate at zero of Lagrange interpolation polynomial to spaced nodes in [-1,1] due to M.Revers concerning f(x) = |x|α with on equally展开更多
Properties of Lebesgue function for Lagrange interpolation on equidistant nodes are investigated. It is proved that Lebesgue function can be formulated both in terms of a hypergeometric function 2F1 and Jacobi polynom...Properties of Lebesgue function for Lagrange interpolation on equidistant nodes are investigated. It is proved that Lebesgue function can be formulated both in terms of a hypergeometric function 2F1 and Jacobi polynomials. Moreover, an integral expression of Lebesgue function is also obtained and the asymptotic behavior of Lebesgue constant is studied.展开更多
We study the optimal order of approximation for |x|α (0 < α < 1) by Lagrange interpolation polynomials based on Chebyshev nodes of the first kind. It is proved that the Jackson order of approximation is attained.
In this paper,Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation.First of all,the interpolation basis function is appli...In this paper,Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation.First of all,the interpolation basis function is applied to treat the spatial variables and their partial derivatives,and the collocation method for solving the second order differential equations is established.Secondly,the differential matrix is used to simplify the given differential equations on a given test node.Finally,based on three kinds of test nodes,numerical experiments show that the present scheme can not only calculate the high wave numbers problems,but also calculate the variable wave numbers problems.In addition,the algorithm has the advantages of high calculation accuracy,good numerical stability and less time consuming.展开更多
In this paper, we investigate the negative extremums of fundamental functions of Lagrange interpolation based on Chebyshev nodes. Moreover, we establish some companion results to the theorem of J. Szabados on the posi...In this paper, we investigate the negative extremums of fundamental functions of Lagrange interpolation based on Chebyshev nodes. Moreover, we establish some companion results to the theorem of J. Szabados on the positive extremum.展开更多
We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, ...We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.展开更多
In this paper, we obtain a properly posed set of nodes for interpolation on a sphere. Moreover it is applied to construct properly posed set of nodes for Lagrange interpolation on the trivariate polynomial space of to...In this paper, we obtain a properly posed set of nodes for interpolation on a sphere. Moreover it is applied to construct properly posed set of nodes for Lagrange interpolation on the trivariate polynomial space of total degree n.展开更多
The following theorem is proved Theorem 1.Let q be a polynomial of degree n(qP_n)with n distinct zeroes lying in the interval[-1,1] and △'_q={-1}∪{τ_i:q'(τ_i)=0,i=1,n-1}∪{1}. If polynomial pP_n satisfies ...The following theorem is proved Theorem 1.Let q be a polynomial of degree n(qP_n)with n distinct zeroes lying in the interval[-1,1] and △'_q={-1}∪{τ_i:q'(τ_i)=0,i=1,n-1}∪{1}. If polynomial pP_n satisfies the inequality then for each k=1,n and any x[-1,1]its k-th derivative satisfies the inequality 丨p^(k)(x)丨≤max{丨q^((k))(x)丨,丨1/k(x^2-1)q^(k+1)(x)+xq^((k))(x)丨}. This estimate leads to the Markov inequality for the higher order derivatives of polynomials if we set q=T_n,where Tn is Chebyshev polynomial least deviated from zero. Some other results are established which gives evidence to the conjecture that under the conditions of Theorem 1 the inequality ‖p^((k))‖≤‖q^(k)‖holds.展开更多
In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of...In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.展开更多
This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. ...This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result.展开更多
The Chebyshev spectral variational integrator(CSVI) is presented in this paper. Spectral methods have aroused great interest in approximating numerically a smooth problem for their attractive geometric convergence rat...The Chebyshev spectral variational integrator(CSVI) is presented in this paper. Spectral methods have aroused great interest in approximating numerically a smooth problem for their attractive geometric convergence rates. The geometric numerical methods are praised for their excellent long-time geometric structure-preserving properties.According to the generalized Galerkin framework, we combine two methods together to construct a variational integrator, which captures the merits of both methods. Since the interpolating points of the variational integrator are chosen as the Chebyshev points,the integration of Lagrangian can be approximated by the Clenshaw-Curtis quadrature rule, and the barycentric Lagrange interpolation is presented to substitute for the classic Lagrange interpolation in the approximation of configuration variables and the corresponding derivatives. The numerical float errors of the first-order spectral differentiation matrix can be alleviated by using a trigonometric identity especially when the number of Chebyshev points is large. Furthermore, the spectral variational integrator(SVI) constructed by the Gauss-Legendre quadrature rule and the multi-interval spectral method are carried out to compare with the CSVI, and the interesting kink phenomena for the Clenshaw-Curtis quadrature rule are discovered. The numerical results reveal that the CSVI has an advantage on the computing time over the whole progress and a higher accuracy than the SVI before the kink position. The effectiveness of the proposed method is demonstrated and verified perfectly through the numerical simulations for several classical mechanics examples and the orbital propagation for the planet systems and the Solar system.展开更多
文摘This paper considers to replace △_m(x)=(1-x^2)~2(1/2)/n +1/n^2 in the following result for simultaneous Lagrange interpolating approximation with (1-x^2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then |f^(k)(x)-P_^(k)(f,x)|=O(1)△_(n)^(a-k)(x)ω(f^(a),△(x))(‖L_n-‖+‖L_n‖),0≤k≤q, where P_n( f ,x)is the Lagrange interpolating polynomial of degree n+ 2r-1 of f on the nodes X_n U Y_n(see the definition of the text), and thus give a problem raised in [XiZh] a complete answer.
基金The second named author was supported in part by an NSERC Postdoctoral Fellowship,Canada and a CR F Grant,University of Alberta
文摘This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).
文摘Here we discuss some phenomena of equiconvergence for the functions analytic inside the lemniscate. A quantitative estimate of sequences of differences between the Jacobi polynomials and Lagrange interpolants and some other results are obtained.
基金the National Natural Science Foundation of China(No.11471062).
文摘In this paper,an optimality condition for nonlinear programming problems with box constraints is given by using linear transformation and Lagrange interpolating polynomials.Based on this condition,two new local optimization methods are developed.The solution points obtained by the new local optimization methods can improve the Karush–Kuhn–Tucker(KKT)points in general.Two global optimization methods then are proposed by combining the two new local optimization methods with a filled function method.Some numerical examples are reported to show the effectiveness of the proposed methods.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
文摘S.M.Lozinskii proved the exact convergence rate at the zero of Lagrange interpolation polynomials to |x| based on equidistant nodes in [-1,1]. In 2000, M. Rever generalized S.M.Lozinskii's result to |x|α(0 <≤ α≤ 1). In this paper we will present the exact rate of convergence at the point zero for the interpolants of |x|α1(1 < α < 2)..
文摘It is a classical result of Bernstein that the sequence of Lagrange interpolation polynomials to \x\ at e-qually spaced nodes in [-1.1] diverges everywhere. except at zero and the end-points. In this paper we show that the sequence of Lagrange interpolation polynomials corresponding to the functions which possess better smoothness on equidistant nodes in [-1.1] still diverges every -where in the interval except at zero and the end-points.
文摘It is a classical result of Bernstein that the sequence of Lagrange interpolation polumomials to |x| at equally spaced nodes in [-1, 1] diverges everywhere, except at zero and the end-points. In the present paper, toe prove that the sequence of Lagrange interpolation polynomials corresponding to |x|^α (2 〈 α 〈 4) on equidistant nodes in [-1, 1] diverges everywhere, except at zero and the end-points.
文摘This paper shows that the sequence of Lagrange interpolation polynomials corresponding to the rune tion f(z) =|x|^α(1〈α〈2) on [-1,1] can diverge everywhere in the interval except at zero and the end-points.
文摘In this paper we present a generalized quantitative version of a result the exact convergence rate at zero of Lagrange interpolation polynomial to spaced nodes in [-1,1] due to M.Revers concerning f(x) = |x|α with on equally
文摘Properties of Lebesgue function for Lagrange interpolation on equidistant nodes are investigated. It is proved that Lebesgue function can be formulated both in terms of a hypergeometric function 2F1 and Jacobi polynomials. Moreover, an integral expression of Lebesgue function is also obtained and the asymptotic behavior of Lebesgue constant is studied.
文摘We study the optimal order of approximation for |x|α (0 < α < 1) by Lagrange interpolation polynomials based on Chebyshev nodes of the first kind. It is proved that the Jackson order of approximation is attained.
基金partially supported by National Natural Science Foundation of China(11772165,11961054,11902170)Key Research and Development Program of Ningxia(2018BEE03007)+1 种基金National Natural Science Foundation of Ningxia(2018AAC02003,2020AAC03059)Major Innovation Projects for Building First-class Universities in China’s Western Region(Grant No.ZKZD2017009).
文摘In this paper,Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation.First of all,the interpolation basis function is applied to treat the spatial variables and their partial derivatives,and the collocation method for solving the second order differential equations is established.Secondly,the differential matrix is used to simplify the given differential equations on a given test node.Finally,based on three kinds of test nodes,numerical experiments show that the present scheme can not only calculate the high wave numbers problems,but also calculate the variable wave numbers problems.In addition,the algorithm has the advantages of high calculation accuracy,good numerical stability and less time consuming.
文摘In this paper, we investigate the negative extremums of fundamental functions of Lagrange interpolation based on Chebyshev nodes. Moreover, we establish some companion results to the theorem of J. Szabados on the positive extremum.
基金Supported by the National Nature Science Foundation.
文摘We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.
文摘In this paper, we obtain a properly posed set of nodes for interpolation on a sphere. Moreover it is applied to construct properly posed set of nodes for Lagrange interpolation on the trivariate polynomial space of total degree n.
文摘The following theorem is proved Theorem 1.Let q be a polynomial of degree n(qP_n)with n distinct zeroes lying in the interval[-1,1] and △'_q={-1}∪{τ_i:q'(τ_i)=0,i=1,n-1}∪{1}. If polynomial pP_n satisfies the inequality then for each k=1,n and any x[-1,1]its k-th derivative satisfies the inequality 丨p^(k)(x)丨≤max{丨q^((k))(x)丨,丨1/k(x^2-1)q^(k+1)(x)+xq^((k))(x)丨}. This estimate leads to the Markov inequality for the higher order derivatives of polynomials if we set q=T_n,where Tn is Chebyshev polynomial least deviated from zero. Some other results are established which gives evidence to the conjecture that under the conditions of Theorem 1 the inequality ‖p^((k))‖≤‖q^(k)‖holds.
文摘In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.
文摘This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result.
基金the National Natural Science Foundation of China (Nos. 11472041,11532002,11772049,and 11802320)。
文摘The Chebyshev spectral variational integrator(CSVI) is presented in this paper. Spectral methods have aroused great interest in approximating numerically a smooth problem for their attractive geometric convergence rates. The geometric numerical methods are praised for their excellent long-time geometric structure-preserving properties.According to the generalized Galerkin framework, we combine two methods together to construct a variational integrator, which captures the merits of both methods. Since the interpolating points of the variational integrator are chosen as the Chebyshev points,the integration of Lagrangian can be approximated by the Clenshaw-Curtis quadrature rule, and the barycentric Lagrange interpolation is presented to substitute for the classic Lagrange interpolation in the approximation of configuration variables and the corresponding derivatives. The numerical float errors of the first-order spectral differentiation matrix can be alleviated by using a trigonometric identity especially when the number of Chebyshev points is large. Furthermore, the spectral variational integrator(SVI) constructed by the Gauss-Legendre quadrature rule and the multi-interval spectral method are carried out to compare with the CSVI, and the interesting kink phenomena for the Clenshaw-Curtis quadrature rule are discovered. The numerical results reveal that the CSVI has an advantage on the computing time over the whole progress and a higher accuracy than the SVI before the kink position. The effectiveness of the proposed method is demonstrated and verified perfectly through the numerical simulations for several classical mechanics examples and the orbital propagation for the planet systems and the Solar system.