In this paper we present a generalized quantitative version of a result the exact convergence rate at zero of Lagrange interpolation polynomial to spaced nodes in [-1,1] due to M.Revers concerning f(x) = |x|α wit...In this paper we present a generalized quantitative version of a result the exact convergence rate at zero of Lagrange interpolation polynomial to spaced nodes in [-1,1] due to M.Revers concerning f(x) = |x|α with on equally展开更多
S.M.Lozinskii proved the exact convergence rate at the zero of Lagrange interpolation polynomials to |x| based on equidistant nodes in [-1,1]. In 2000, M. Rever generalized S.M.Lozinskii's result to |x|α(0 <≤...S.M.Lozinskii proved the exact convergence rate at the zero of Lagrange interpolation polynomials to |x| based on equidistant nodes in [-1,1]. In 2000, M. Rever generalized S.M.Lozinskii's result to |x|α(0 <≤ α≤ 1). In this paper we will present the exact rate of convergence at the point zero for the interpolants of |x|α1(1 < α < 2)..展开更多
文摘In this paper we present a generalized quantitative version of a result the exact convergence rate at zero of Lagrange interpolation polynomial to spaced nodes in [-1,1] due to M.Revers concerning f(x) = |x|α with on equally
文摘S.M.Lozinskii proved the exact convergence rate at the zero of Lagrange interpolation polynomials to |x| based on equidistant nodes in [-1,1]. In 2000, M. Rever generalized S.M.Lozinskii's result to |x|α(0 <≤ α≤ 1). In this paper we will present the exact rate of convergence at the point zero for the interpolants of |x|α1(1 < α < 2)..