This paper proposes nonlinear Lagrangians based on modified Fischer-Burmeister NCP functions for solving nonlinear programming problems with inequality constraints. The convergence theorem shows that the sequence of p...This paper proposes nonlinear Lagrangians based on modified Fischer-Burmeister NCP functions for solving nonlinear programming problems with inequality constraints. The convergence theorem shows that the sequence of points generated by this nonlinear La- grange algorithm is locally convergent when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions, and the error bound of solution, depending on the penalty parameter, is also established. It is shown that the condition number of the nonlinear Lagrangian Hessian at the optimal solution is proportional to the controlling penalty parameter. Moreover, the paper develops the dual algorithm associ- ated with the proposed nonlinear Lagrangians. Numerical results reported suggest that the dual algorithm based on proposed nonlinear Lagrangians is effective for solving some nonlinear optimization problems.展开更多
文摘This paper proposes nonlinear Lagrangians based on modified Fischer-Burmeister NCP functions for solving nonlinear programming problems with inequality constraints. The convergence theorem shows that the sequence of points generated by this nonlinear La- grange algorithm is locally convergent when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions, and the error bound of solution, depending on the penalty parameter, is also established. It is shown that the condition number of the nonlinear Lagrangian Hessian at the optimal solution is proportional to the controlling penalty parameter. Moreover, the paper develops the dual algorithm associ- ated with the proposed nonlinear Lagrangians. Numerical results reported suggest that the dual algorithm based on proposed nonlinear Lagrangians is effective for solving some nonlinear optimization problems.