In this paper, an exact algorithm was proposed for optimal redundancy in a series system with multiple component choices. A reformulation of the nonseparable reliability function was approximated by a separable intege...In this paper, an exact algorithm was proposed for optimal redundancy in a series system with multiple component choices. A reformulation of the nonseparable reliability function was approximated by a separable integer programming problem. The resulting separable nonlinear integer programming problem is used to compute upper bounds by Lagrangian relaxation and dual search. A special partition scheme was derived to reduce the duality gap in a branch-and-bound process, thus ensure the convergence of the algorithm. Computational results show that the algorithm is efficient for solving this class of reliability optimization problems.展开更多
文摘In this paper, an exact algorithm was proposed for optimal redundancy in a series system with multiple component choices. A reformulation of the nonseparable reliability function was approximated by a separable integer programming problem. The resulting separable nonlinear integer programming problem is used to compute upper bounds by Lagrangian relaxation and dual search. A special partition scheme was derived to reduce the duality gap in a branch-and-bound process, thus ensure the convergence of the algorithm. Computational results show that the algorithm is efficient for solving this class of reliability optimization problems.