期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Lagrangian time scales and its relationship to Eulerian equivalents in turbulent channel flow
1
作者 罗剑平 卢志明 刘宇陆 《Journal of Shanghai University(English Edition)》 2010年第1期71-75,共5页
Lagrangian and Eulerian time scales were obtained from the direct numerical simulation of turbulent channel flow at two Reynolds numbers based on the friction velocity and channel half-height, Rer= 80, 100. The Lagran... Lagrangian and Eulerian time scales were obtained from the direct numerical simulation of turbulent channel flow at two Reynolds numbers based on the friction velocity and channel half-height, Rer= 80, 100. The Lagrangian integral time scales and time microscales were compared to their Eulerian equivalents. It is found that the ratio of Lagrangian to TL Eulerian integral time scales is given by TE/TiE= 1 + 0.1y+ for y+ ≤ 10, and that the ratios between the Lagrangian to theEulerian time microscales are almost the same irrespective of the components. Those increase with y+ are approximated by ≈ 2.75 - 1.75 exp (-v+/a) . These results also show that these expressions are independent of the Reynolds number. 展开更多
关键词 turbulent channel flow lagrangian time scale Eulerian time scale direct numerical simulation (DNS)
下载PDF
Two-phase micro-and macro-time scales in particle-laden turbulent channel flows
2
作者 Bing Wang Michael Manhart 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期595-604,共10页
The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct nu- merical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases, res... The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct nu- merical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases, respectively. Lagrangian and Eulerian time scales of both phases are cal- culated using velocity correlation functions. Due to flow anisotropy, micro-time scales are not the same with the theo- retical estimations in large Reynolds number (isotropic) tur- bulence. Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number. The fluid-phase Lagrangian inte- gral time scales increase with distance from the wall, longer than those time scales seen by particles. The Eulerian inte- gral macro-time scales increase in near-wall regions but de- crease in out-layer regions. The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales, and in good agreement with previous measure- ments and numerical predictions. For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions, while away from the walls the micro Lagrangian time scales are longer. The Lagrangian integral time scales are longer than the Eulerian ones. The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion. 展开更多
关键词 Micro-time scale lagrangian integral timescale ~ Moving Eulerian time scale Particle-laden turbulentflow ~ Particle Stokes number Direct numerical simulation(DNS) lagrangian trajectory method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部