Biotite is an important hydrated ferromagnesian silicate mineral in igneous rocks and porphyry deposits.The determination of chemical compositions of biotite plays an important role in both igneous petrology and ore f...Biotite is an important hydrated ferromagnesian silicate mineral in igneous rocks and porphyry deposits.The determination of chemical compositions of biotite plays an important role in both igneous petrology and ore forming processes.This paper summarizes research results of magmatic and hydrothermal biotites exemplified by the Lakange porphyry Cu–Mo deposit and the Qulong porphyry Cu deposit in the Gangdese porphyry–skarn metallogenic belt,Tibet.Biotite mineral chemistry can provide critical insights into classification,geothermometer,geothermobarometry,oxygen fugacity,petrogenesis and tectonic setting,evaluating magmatic-hydrothermal process by halogen and halogen fugacity ratios,and distinguishing between barren and mineralized rocks.Biotite provides the latest mineralogical evidence on metallogenic prognosis and prospecting evaluation for porphyry Cu polymetallic deposits or magmatic hydrothermal deposits.展开更多
This work presents zircon U–Pb age and wholerock geochemical data for the volcanic rocks from the Lakang Formation in the southeastern Tethyan Himalaya and represents the initial activity of the Kerguelen mantle plum...This work presents zircon U–Pb age and wholerock geochemical data for the volcanic rocks from the Lakang Formation in the southeastern Tethyan Himalaya and represents the initial activity of the Kerguelen mantle plume. SHRIMP U–Pb dating of zircons from the volcanic rocks yielded a ^(206) Pb/^(238) U age of 147 ± 2 Ma that reflects the time of Late Jurassic magmatism. Whole rock analyses of major and trace elements show that the volcanic rocks are characterized by high content of Ti O_2(2.62 wt%–4.25 wt%) and P_2O_5(0.38 wt%–0.68 wt%), highly fractionated in LREE/HREE [(La/Yb)N= 5.35–8.31] with no obvious anomaly of Eu, and HFSE enrichment with no obvious anomaly of Nb and Ta, which are similar to those of ocean island basalts and tholeiitic basaltic andesites indicating a mantle plume origin. The Kerguelen mantle plume produced a massive amount of magmatic rocks from Early Cretaceous to the present, which widely dispersed from their original localities of emplacement due to the changing motions of the Antarctic, Australian, and Indian plates. However, our new geochronological and geochemical results indicate that the Kerguelen mantle plume started from the Late Jurassic. Furthermore, we suggest that the Kerguelen mantle plume may played a significant role in the breakup of eastern Gondwanaland according to the available geochronological, geochemical and paleomagnetic data.展开更多
基金supported by the National Key R&D Program of China (grant number 2018YFC0604101)the Public Science and Technology Research Funds Projects, Ministry of Land Resources of the People’s Republic of China (project nos. 201511017 and 201511022-05)+2 种基金the Basic Research Fund of the Chinese Academy of Geological Sciences (grant no. YYWF201608)the National Natural Science Foundation of China (grant no. 41402178)the Geological Survey project (grant no. DD20160026)
文摘Biotite is an important hydrated ferromagnesian silicate mineral in igneous rocks and porphyry deposits.The determination of chemical compositions of biotite plays an important role in both igneous petrology and ore forming processes.This paper summarizes research results of magmatic and hydrothermal biotites exemplified by the Lakange porphyry Cu–Mo deposit and the Qulong porphyry Cu deposit in the Gangdese porphyry–skarn metallogenic belt,Tibet.Biotite mineral chemistry can provide critical insights into classification,geothermometer,geothermobarometry,oxygen fugacity,petrogenesis and tectonic setting,evaluating magmatic-hydrothermal process by halogen and halogen fugacity ratios,and distinguishing between barren and mineralized rocks.Biotite provides the latest mineralogical evidence on metallogenic prognosis and prospecting evaluation for porphyry Cu polymetallic deposits or magmatic hydrothermal deposits.
基金financially supported by the National Natural Science Foundation of China(Nos.41173065,41572205)the Geological Survey of China(Grant no.DD20160345)Ministry of Science and Technology(No.2012FY120100)
文摘This work presents zircon U–Pb age and wholerock geochemical data for the volcanic rocks from the Lakang Formation in the southeastern Tethyan Himalaya and represents the initial activity of the Kerguelen mantle plume. SHRIMP U–Pb dating of zircons from the volcanic rocks yielded a ^(206) Pb/^(238) U age of 147 ± 2 Ma that reflects the time of Late Jurassic magmatism. Whole rock analyses of major and trace elements show that the volcanic rocks are characterized by high content of Ti O_2(2.62 wt%–4.25 wt%) and P_2O_5(0.38 wt%–0.68 wt%), highly fractionated in LREE/HREE [(La/Yb)N= 5.35–8.31] with no obvious anomaly of Eu, and HFSE enrichment with no obvious anomaly of Nb and Ta, which are similar to those of ocean island basalts and tholeiitic basaltic andesites indicating a mantle plume origin. The Kerguelen mantle plume produced a massive amount of magmatic rocks from Early Cretaceous to the present, which widely dispersed from their original localities of emplacement due to the changing motions of the Antarctic, Australian, and Indian plates. However, our new geochronological and geochemical results indicate that the Kerguelen mantle plume started from the Late Jurassic. Furthermore, we suggest that the Kerguelen mantle plume may played a significant role in the breakup of eastern Gondwanaland according to the available geochronological, geochemical and paleomagnetic data.